
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) x^8+x^4+1
=x^8-x^2+x^4-x+x^2+x+1
=x^2(x^6-1)+x(x^3-1)+(x^2+x+1)
=x^2[(x^3)^2-1]+x(x^3-1)+(x^2+x+1)
=x^2(x^3-1)(x^3+1)+x(x^3-1)+(x^2+x+1)
=x^2(x-1)(x^2+x+1)(x^3+1)+x(x^3-1)+(x^2+x+1)
=x^2(x-1)(x^2+x+1)(x^3+1)+x(x-1)(x^2+x+1)+(x^2+x+1)
=(x^2+x+1)[x^2(x-1)(x^3+1)+x(x-1)+1]
=(x^2+x+1)(x^6+x^3-x^5-x+1)
dung thi tick cho minh nha minh thu may tinh roi

x8 + x +1= x8 +x7 - x7 + x6 - x6 + x5 - x5 + x4 -x4 +x3 -x3 + x2 -x2 +x +1
= (x2+x+1)*(x6 -x5+x3-x2+1)

a) \(\Rightarrow\left(x^2\right)^2+\left(2^2\right)^2+2.2x^2-2.2x^2\Rightarrow\left(x^2+2\right)^2-\left(2x\right)^2\Rightarrow\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
b) \(\Rightarrow\left(2x^4\right)^2+2.2.x^4.1+1-2.2.x^4.1\Rightarrow\left(2x^4+1\right)^2-\left(2x^2\right)^2\Rightarrow\left(2x^4+1-2x^2\right)\left(2x^4+1+2x^2\right)\)
CHÚC BẠN học tốt
T I C K cho mình nha cảm ơn
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)

1)\(8x^6-\frac{1}{125}y^3=\left(2x^2\right)^3-\left(\frac{1}{5}y\right)^3\)
Bạn tự lm tiếp.AD HĐT số (7)
2)\(\left(x+4\right)^3-64=\left(x+4\right)^3-4^3\)
AD HĐT số (7).Tự lm tiếp
3)\(x^6+1=\left(x^2\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
4)\(x^9+1=\left(x^3\right)^3+1\)
AD HĐT số (7).Tự lm tiếp
5,\(x^{12}-y^4=\left(x^6\right)^2-\left(y^2\right)^2\)
AD HĐT số (3).Tự lm tiếp
6)\(x^3+6x^2+12x+8=\left(x+2\right)^3\)
AD HĐT số (4)
7)\(x^3-15x^2+75x-125=\left(x-5\right)^3\)
AD HĐT số (5)
8)\(27a^3-54a^2b+36ab^2-8b^3\)
\(=\left(3a\right)^3-3.\left(3a\right)^2.2b+3.3a.\left(2b\right)^2-\left(2b\right)^3\)
\(=\left(3a-2b\right)^3\)
AD HĐT số (5)

\(x^8+x^4+1=\left(x^8+2x^4+1\right)-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
câu b thì tương tự câu này
\(x^5+x+1=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
câu cuối cũng giống câu này
\(x^8+x^4+1\)
\(\text{Phân tích đa thức thành nhân tử :}\)
\(\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
Lát làm tiếp

Đa thức có dạng \(x^{3a+1}+x^{3b+2}+1\) thì đưa về dạng \(\left(x^2+x+1\right)\cdot P\left(x\right)\) bạn nhé!
Bài làm:
\(x^5+x+1\)
\(=\left(x^5-x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1^3\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
\(x^5+x+1=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2\left(x-1\right)+1\right)\)

\(x^4+x^3+x^2-1\)
\(=x^3\left(x+1\right)+\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1\right)\left(x^3+\left(x-1\right)\right)\)
Ủng hộ nha ^ _ ^
\(x^4+x^3+x^2-1\)
\(=x^2\left(x^2-1\right)+x^2-1\)
\(=\left(x^2+1\right)\left(x^2-1\right)\)

Bài làm:
a) \(x^6-6x^4+12x^2-8\)
\(=\left(x^2-2\right)^3\)
b) \(x^2+16-8x=\left(x-4\right)^2\)
c) \(10x-x^2-25=-\left(x-5\right)^2\)
d) \(9\left(a-b\right)^2-4\left(x-y\right)^2\)
\(=\left[3\left(a-b\right)\right]^2-\left[2\left(x-y\right)\right]^2\)
\(=\left(3a-3b-2x+2y\right)\left(3a-3b+2x-2y\right)\)
e) \(\left(x+y\right)^2-2xy+1\)
\(=x^2+2xy+y^2-2xy+1\)
\(=x^2+y^2+1\)
sai sai
a. \(x^6-6x^4+12x^2-8=\left(x^2\right)^3-3\left(x^2\right)^2.2+3x^22-2^3=\left(x^2-2\right)^3\)
b. \(x^2+16-8x=x^2-8x+4^2=\left(x-4\right)^2\)
c. \(10x-x^2-25=10x-x^2-5^2=-\left(x-5\right)^2\)
d. \(9\left(a-b\right)^2-4\left(x-y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)
e. \(\left(x+y\right)^2-2xy+1=x^2+2xy+y^2-2xy+1=x\left(x+2y\right)-y\left(y+2x\right)+2y^2+1\)
\(=x\left(x+y\right)-y\left(y+x\right)+xy-yx+2y^2+x=\left(x-y\right)\left(x+y\right)+2y^2+x\)

a) \(x^2+4x+3=\left(x^2+4x+4\right)-1=\left(x+2\right)^2-1^2=\left(x+1\right)\left(x+3\right)\) (mình sửa lại)
b) \(x^2+8x-9=\left(x^2+8x+16\right)-25=\left(x+4\right)^2-5^2=\left(x-1\right)\left(x+9\right)\)
c) \(3x^2+6x-9=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)
d) \(2x^2+x-3=2x^2-4x+2+5x-5=2\left(x^2-2x+1\right)+5\left(x-1\right)=2\left(x-1\right)^2+5\left(x-1\right)=\left(x-1\right)\left(2x+3\right)\)
\(x^8+x+1\)
\(=x^8-x^7+x^5-x^4+x^2+x^7-x^6+x^4-x^3+x+x^6-x^5+x^3-x^2+1\)
\(=\left(x^8-x^7+x^5-x^4+x^2\right)+\left(x^7-x^6+x^4-x^3+x\right)+\left(x^6-x^5+x^3-x^2+1\right)\)
\(=x^2\left(x^6-x^5+x^3-x^2+1\right)+x\left(x^6-x^5+x^3-x^2+1\right)+\left(x^6-x^5+x^3-x^2+1\right)\)
\(=\left(x^6-x^5+x^3-x^2+1\right)\left(x^2+x+1\right)\)