Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1).(2x+1) + 3.(x-1).(x+2).(2x+1)
= (x-1).(2x+1).[1+3.(x+2)]
chúc bn học tốt
(x-1).(2x+1) + 3.(x-1).(x+2).(2x+1)
= (x-1).(2x+1).[1+3.(x+2)]
#
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x.\left(4x+2\right)\)
\(=4x\left(2x+1\right)\)
\(\left(3x+1\right)^2-\left(x+1\right)^2\)
\(=\left[\left(3x+1\right)-\left(x+1\right)\right]\left[\left(3x+1\right)+\left(x+1\right)\right]\)
\(=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)
\(=2x\left(4x+2\right)\)
\(=2x\cdot2\left(2x+1\right)\)
\(=4x\left(2x+1\right)\)
Học tốt ##
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
Đặt \(x^2+3x=t\) ta có :
\(\left(x^2+3x\right)\left(x^2+3x+2\right)+1=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\)
\(=\left(x^2+3x+1\right)^2\)
Vậy \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\) phân tích thành nhân tử là \(\left(x^2+3x+1\right)^2\)
\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-5x+6\right)+\left(x-1\right)\left(x-2\right)-\left(x-1\right)\)\(A=\left(x-1\right)\left(x^2-5x+6+x-2\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x^2-4x+4\right)-\left(x-1\right)\)
\(A=\left(x-1\right)\left(x-2\right)^2-\left(x-1\right)\)
\(A=\left(x-1\right)\left[\left(x-2\right)^2-1\right]\)
\(A=\left(x-3\right)\left(x-1\right)^2\)
link tham khảo
https://olm.vn/hoi-dap/detail/9212510579.html
hok tót
\(\left(x+2\right)\left(x-1\right)+3.\left(x-1\right)=\left[\left(x+2\right)+3\right].\left(x-1\right)\)
\(=\left(x+5\right).\left(x-1\right)\)