Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt y=x2+4x+8 ta được
y2+3xy+2x2=y2+xy+2xy+2x2=y(y+x)+2x(y+x)
=(y+x)(y+2x)
thay y=x2+4x+8 ta được
(x2+5x+8)(x2+7x+8)
=(x^2+4x+8)2+2x(x^2+4x+8)+(x^2+4x+8)+2x^2
=(x^2+5x+8)(x^2+6x+8)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
đặt \(x^2+4x+8=a\)
=> \(A=a^2+3ax+2x^2=a^2+ax+2ax+2x^2=a\left(a+x\right)+2x\left(a+x\right)\)
\(=\left(a+x\right)\left(a+2x\right)\)
b) ta có
\(B=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
đặt \(x^2+8x+11=a\)
=> \(B=\left(a-4\right)\left(a+4\right)+15=a^2-16+15=a^2-1=\left(a-1\right)\left(a+1\right)\)
\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)=\left(x^2+8x+10\right)\left(x^2+6x+2x+12\right)\)
\(=\left(x^2+8x+10\right)\left[x\left(x+6\right)+2\left(x+6\right)\right]=\left(x^2+8x+10\right)\left(x+6\right)\left(x+2\right)\)
a) (x2-4x+3)(x2-10x+24)+8=((x2-x)-(3x-3))((x2-6x)-(4x-24))+8
=(x(x-1)-3(x-1))(x(x-6)-4(x-6))+8=(x-1)(x-3)(x-4)(x-6)+8=((x-1)(x-6))(x-3)(x-4))+8
=(x2-7x+6)(x2-7x+12)+8
Đặt x2-7x+6=a
Ta có : a(a+6)+8=a2+6a+8=(a+2)(a+4)=(x2-7x+8)(x2-7x+10)=(x2-7x+8)(x-5)(x-2)
b) Tương tự như câu a kết quả là (x-3)(x3+9x2+21x+9)
c) x4+x3+6x2+3x+9=(x4+x3+3x2)+(3x2+3x+9)=x2(x2+x+3)+3(x2+x+3)=(x2+x+3)(x2+2)
(x+2)(x+4)(x^2+5x+8)
#)Giải :
Đặt \(x^2+4x+8=k\)
Ta có :\(k^2+3xk+2x^2=k^2+2xk+xk+2x^2=k\left(k+2x\right)+x\left(k+2x\right)=\left(k+x\right)\left(k+2x\right)\)
\(\Rightarrow\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8+x\right)\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)