\(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

Ghi rõ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2018

   \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

\(=x^4+4x^3+2x^2-4x+1\)

\(=\left(x^4+2x^3-x^2\right)+\left(2x^3+4x^2-2x\right)-\left(x^2+2x-1\right)\)

\(=x^2\left(x^2+2x-1\right)+2x\left(x^2+2x-1\right)-\left(x^2+2x-1\right)\)

\(=\left(x^2+2x-1\right)^2\)

21 tháng 3 2017

chịu....................??????????????????????????????????????????????????

21 tháng 3 2017

x^2(1-x^2)-4-4x^2

=x^2-x^4-4-4x^2 

=x^2-(x^2+1)^2

=(x-x^2-1)(x+x^2+1)

31 tháng 10 2020

a) Đặt: x = a- b; y = b - c ; z = c- a 

Ta có: x + y + z = 0 

=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)

=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

b) Đặt: \(a=x^2-2x\) 

Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)

\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)

d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)

Đặt: \(x^2-8=t\)

Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)

\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)

\(=\left(2x^2+9x-16\right)^2\)

14 tháng 8 2017

a) \(x^2-8y^2+6x+9\)

\(=\left(x^2+6x+9\right)-8y^2\)

\(=\left(x+3\right)^2-\left(\sqrt{8}\cdot y\right)^2\)

\(=\left(x+3+\sqrt{8}y\right)\left(x+3-\sqrt{8}y\right)\)

11 tháng 10 2020

Rút gọn thôi chứ phân tích sao được ._.

( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )

= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )

= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18

= -30x2 - 52x - 7

11 tháng 10 2020

Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))

Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)

\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)

\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)

\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)

\(=\left(4x+7\right)\left(12x+17\right)\)

21 tháng 6 2017

\(A=\left(1+x^2\right)^2-4x\left(1-x^2\right)\)

\(=x^4+2x^2+1-4x+4x^3\)

\(=x^4+4x^3+2x^2-4x+1\)

\(=\left(x^4+2x^3-x^2\right)+\left(2x^3+4x^2-2x\right)-\left(x^2+2x-1\right)\)

\(=\left(x^2+2x-1\right)^2\)

( 1  + x2)2  -  4x ( 1 - x2 )  

= x4 + 2x2 + 1 - 4x + 4x3

= x3 + 2x2 - x + 2x3  + 4x2 - 2x - x2  - 2x + 1

= x ( x2 + 2x -  1 ) +  2x  ( x2  + 2x - 1 ) - ( x2 + 2x  - 1 ) 

= ( x2 + 2x - 1 ) ( x2 + 2x   - 1 ) 

= ( x2 +  2x - 1)2