![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:A= 3a+3b-a^2-ab
=>A= (3a-a^2)+(3b-ab)
=>A= a(3-a)+b(3-a)
=>A= (a+b)(3-a)
![](https://rs.olm.vn/images/avt/0.png?1311)
3\(a^2\)+ a - 4 = ( 3\(a^2\)- 3a ) + ( 4a - 4)
= 3a (a-1) + 4(a-1)
= (3a+4). (a-1)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^3-3a-110=0\)
\(\Leftrightarrow a^3-5a^2+5a^2-25a+22a-110=0\)
\(\Leftrightarrow a^2.\left(a-5\right)+5a\left(a-5\right)+22\left(a-5\right)=0\)
\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)
Vì \(a^2+5a+22=a^2+2.\frac{5}{2}a+\frac{25}{4}+\frac{63}{4}=\left(a+\frac{5}{2}\right)^2+\frac{63}{4}>0\)
\(\Rightarrow a-5=0\)\(\Rightarrow a=5\)
Vậy nghiệm của phương trình là \(S=\left\{5\right\}\)
\(a^3-3a-110=0\)
\(\Leftrightarrow a^3-25a+22a-110=0\)
\(\Leftrightarrow a\left(a^2-25\right)+22\left(a-5\right)=0\)
\(\Leftrightarrow a\left(a+5\right)\left(a-5\right)+22\left(a-5\right)=0\)
\(\Leftrightarrow\left(a-5\right)\left(a^2+5a+22\right)=0\)
Ta có : \(a^2+5a+22=a^2+2.a.\frac{5}{2}+\frac{25}{4}+\frac{63}{4}=\left(a+\frac{5}{2}\right)^2+\frac{63}{4}>0\)
\(\Rightarrow a-5=0\)
\(\Rightarrow a=5\)
Vậy phương trình có 1 nghiệm : a = 5