\(a^2-10a+25-4b^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

\(a^2-10a+25-4b^2\)

\(=\left(a^2-2.a.5+5^2\right)-\left(2b\right)^2\)

\(=\left(a-5\right)^2-\left(2b\right)^2\)

\(=\left(a-2b-5\right)\left(a+2b-5\right)\)

27 tháng 7 2017

    \(a^2-10a+25-4b^2\)

\(=\left(a^2-2.a.5+5^2\right)-\left(2b\right)^2\)

\(=\left(a-5\right)^2-\left(2b\right)^2\)

\(=\left(a-2b-5\right)\left(a+2b-5\right)\)

6 tháng 10 2018

       \(a^2-10a+25-y^2-4yz-4z^2\)

\(=a^2-2.a.5+5^2-y^2-2.y.2z-\left(2z\right)^2\)

\(=\left(a-5\right)^2-\left(y+2z\right)^2\)

\(=\left(a-y-2z-5\right)\left(a+y+2z-5\right)\)

6 tháng 10 2018

Very easy

\(a^2-10a+25-y^2-4yz-4z^2\)

\(=\left(a-5\right)^2-\left(y+2z\right)^2\)

\(=\left(a-5-y-2z\right)\left(a-5+y+2z\right)\)

19 tháng 7 2019

\(A=b^4-9a^2-4b^2+4=b^4-4b^2+4-9a^2\)

\(=\left(b^2-2\right)^2-9a^2\)

\(=\left(b^2-2+3a\right)\left(b^2-2-3a\right)\)

\(A=b^4-9a^2-4b^2+4\)

\(A=\left(b^2\right)^2-2.2.b^2+2^2-9a^2\)

\(A=\left(b^2-2\right)^2-\left(3a\right)^2\)

\(A=\left(b^2-2-3a\right)\left(b^2-2+3a\right)\)

_Hắc phong_

8 tháng 12 2017

a) \(x^2+6x+9\)

\(=\left(x+3\right)^2\)

\(=\left(x+3\right)\left(x+3\right)\)

b) \(10x-25-x^2\)

\(=-\left(x^2-10x+25\right)\)

\(=-\left(x-5\right)^2\)

\(=-\left(x-5\right)\left(x-5\right)\)

c) \(8x^3-\frac{1}{8}\)

\(=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)

\(=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)

d) \(\frac{1}{25}x^2-64y^2\)

\(=\left(\frac{1}{5}x\right)^2-\left(8y\right)^2\)

\(=\left(\frac{1}{5}x-8y\right)\left(\frac{1}{5}x+8y\right)\)

8 tháng 12 2017

a) \(x^2+6x+9=x^2+2.3.x+3^2\)\(=\left(x+3\right)^2\)

b)\(10x-25-x^2=-\left(x^2-10x+25\right)\)\(=-\left(x^2-2.5.x+5^2\right)=-\left(x+5\right)^2\)

c)\(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3\)\(=\left(2x-\frac{1}{2}\right)\left(4x+x+\frac{1}{4}\right)\)

d)\(\frac{1}{25}x^2-64y^2=\left(\frac{1}{5}\right)^2-\left(8y\right)^2\)\(=\left(\frac{1}{5}-8y\right)\left(\frac{1}{5}+8y\right)\)

9 tháng 12 2018

\(ay^2-4ay+4a-by^2+4by-4b\)

\(=\left(ay^2-4ay+4a\right)-\left(by^2-4by+4b\right)\)

\(=a\left(y^2-4y+4\right)-b\left(y^2-4y+4\right)\)

\(=a\left(y-2\right)^2-b\left(y-2\right)^2\)

\(=\left(y-2\right)^2\left(a-b\right)\)

9 tháng 12 2018

=(ay2-by2)+(-4ay+4by)+(4a-4b)

=y2(a-b)+ 4(a-b)

=(a-b)×(y2+4)

26 tháng 8 2017

   a- 10a + 25 - y2 - 4yz - 4z2 

( a2 -10a + 52 ) - ( y2 + 4yz + 4z2 ) 

( a - 5 )2 - ( y + 2z )2 

[ ( a - 5 ) + ( y + 2z ) ] x [ ( a - 5 ) - ( y + 2z ) ] 

ở trên chỗ - ( y + 4yz + 4z ) đấy là vì tớ đặt dấu trừ trước ngoặc nên bên trong đổi dấu đấy

26 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

23 tháng 9 2018

\(4b^2c^2-\left(b^2+c^2-a^2\right)^2\)

\(=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\)

\(=\left[a^2-\left(b^2-2bc+c^2\right)\right].\left[\left(b^2+2bc+c^2\right)-a^2\right]\)

\(=\left[a^2-\left(b-c\right)^2\right].\left[\left(b+c\right)^2-a^2\right]\)

\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\)

\(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)

\(=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\)

\(=\left[\left(a-b\right)^2-3^2\right].\left[\left(a+b\right)^2-1\right]\)

\(=\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)

Tham khảo nhé~

21 tháng 3 2019

\(P=\left(a^8+2a^4b^4+b^8\right)-a^4b^4\)

\(P=\left(a^4+b^4\right)^2-a^4b^4\)

\(P=\left(a^4+b^4+a^2b^2\right)\left(a^4+b^4-a^2b^2\right)\)

\(P=\left[\left(a^2+b^2\right)^2-a^2b^2\right]\left(a^4+b^4-a^2b^2\right)\)

\(P=\left(a^2+b^2+ab\right)\left(a^2+b^2-ab\right)\left(a^4+b^4-a^2b^2\right)\)

\(P=\left[\left(a+b\right)^2-ab\right]\left(a^2+b^2-ab\right)\left(a^4+b^4-a^2b^2\right)\)

\(P=\left(a+b+\sqrt{ab}\right)\left(a+b-\sqrt{ab}\right)\left(a^2+b^2-ab\right)\left(a^4+b^4-a^2b^2\right)\)