Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)\(21x^2y-12xy^2=xy.\left(21x-12y\right)\)
2)\(x^3+x^2-2x=x.\left(x^2+x-2\right)\)
3)\(3x.\left(x-1\right)+7x^2\left(x-1\right)=\left(x-1\right).\left(3x+7x^2\right)=x.\left(x-1\right)\left(3+7x\right)\)
15)\(\left(2a+3\right)^2-\left(2a+1\right)^2=\left(2a+3-2a-1\right)\left(2a+3+2a+1\right)=2.\left(4a+4\right)=8\left(a+1\right)\)
14) \(-4y^2+4y-1=-\left[\left(2y\right)^2-2.2y.1+1^2\right]=-\left(2y-1\right)^2\)
13) \(x^6+1=\left(x^2\right)^3+1=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
12) \(\left(x+1\right)^2-\left(y+6\right)^2=\left(x+1-y-6\right)\left(x+1+y+6\right)=\left(x-y-5\right)\left(x+y+7\right)\)
4) \(3x\left(x-a\right)+4a\left(a-x\right)=3x.\left(x-a\right)-4a\left(x-a\right)=\left(x-a\right)\left(3x-4a\right)\)
Sao nhiều thế!
Bài 2;
\(a)x^4-16x=0\Rightarrow x^4=16x\Leftrightarrow x^3=16\Leftrightarrow x=\sqrt[3]{16}\)
\(c)4x^2-\frac{1}{4}=0\Leftrightarrow4x^2=\frac{1}{4}\Leftrightarrow x^2=\frac{1}{16}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{1}{4}\end{cases}}\)
Bài 1:
a) \(3x-6y=3\left(x-2y\right)\)
b) \(\frac{2}{5}x^2+x^3+x^2y\)
\(=x^2\left(\frac{2}{5}+x+y\right)\)
c) \(14x^2y-21xy^2+28x^2y^2\)
\(=xy\left(14x-21y+28xy\right)\)
d) \(\frac{2}{3}x\left(y-1\right)-\frac{2}{5}y\left(y-1\right)\)
\(=\left(y-1\right)\left(\frac{2}{3}x-\frac{2}{5}y\right)\)
e) \(10x\left(x-y\right)-8y\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
f) \(4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x-5\right)\left(2x+5\right)\)
g) \(6x-9-x^2\)
\(=-x^2+6x-9\)
\(=-\left(x+3\right)^2\)
h) \(x^3+y^3+z^3-3xyz\)
Đề sai ?? ko tách đc nữa
Bài 2:
a) \(15.91,5+150.0,85\)
\(=15.\left(91,5+8,5\right)\)
\(=15.100\)
\(=1500\)
b) \(x\left(x-1\right)-y\left(1-x\right)\)
\(=x\left(x-1\right)+y\left(x-1\right)\)
\(=\left(x-1\right)\left(x+y\right)\)
\(=2000.4000\)
\(=8000000\)
c) \(87^2+73^2-27^2-13^2\)
\(=\left(87^2-27^2\right)+\left(73^2-13^2\right)\)
\(=\left(87-27\right)\left(87+27\right)+\left(73-13\right)\left(73+13\right)\)
\(=60.114+60.86\)
\(=60.\left(144+86\right)\)
\(=60.230\)
\(=82800\)
d) \(73^2-27^2\)
\(=\left(73-27\right)\left(73+27\right)\)
\(=46.100\)
\(=4600\)
e) f) tương tự
\(\left(x+y\right)^2-\left(x-y\right)^2\)
\(=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x\)
\(=4xy\)
b) (3x+1)2-(x+1)2
=(3x+1+x+1)[(3x+1)-(x+1)]
=(4x+2)2x
=2(2x+1)2x
=4x(2x+1)
c) x3+y3+z3-3xyz
=(x+y)3-3xy(x+y)+z3-3xyz
=[(x+y)3+z3]-3xy(x+y+z)
=(x+y+z)[(x+y)2-z(x+y)+z2]-3xy(x+y+z)
=(x+y+z)(x2+2xy+y2-xz-zy+z2-3xy)
=(x+y+z)(x2+y2+z2-xy-yz-zx)
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
bài 1
a(x+y)2-(x-y)2
=[(x+y)-(x-y)][(x+y)+(x-y)]
=(x+y-x+y)(x+y+x-y)
=2y.2x
b,(3x+1)2-(x+1)2
=[(3x+1)-(x+1)][(3x+1)+(x+1)]
=(3x+1-x-1)(3x+1+x+1)
=2x.(4x+2)
4x.(x+10
bài 2
x3-0,25x=0
=>x(x2-0,25)=0
=>x=0 hoặc x2-0,25=0
=> x=0 hoặc x=\(\pm0,5\)
\(\text{Tìm x:}\)
\(a.x\left(x-1\right)-3x+3x=0\)
\(x\left(x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
\(b.3x\left(x-2\right)+10-5x=0\)
\(3x^2-6x+10-5x=0\)
\(3x^2-11x+10=0\)
\(3x^2-11x=-10\)(bn xem lại đề nhé)
\(c.x^3-5x^2+x-5=0\)
\(x^3-5x^2+x=5\)
\(d.x^4-2x^3+10x^2-20x=0\)
bài 1:phân tích thành phân tử
a> x^2-6x-y^2+9
= (x-3)^2 -y^2
= (x-3 -y) (x-3+y)
b>x^2-xy-8x+8y
= x(x-y) - 8(x-y)
= (x-8) (x-y)
c>25-4x^2-4xy-y^2
= 5^2 - (2x + y)^2
= (5 - 2x -y) (5 +2x+y)
d>xy-xz-y+z
= x(y-z) - (y-z)
= (x-1) (y-z)
e>x^2-xz-yz+2xy+y^2
= (x+y)^2 - z(x+y)
= (x+y-z) (x+y)
g>x^2-4xy+4y^2-z^2-4zt-4t^2
= (x-2y)^2 - (z + 2t)^2
= (x-2y -x-2t) (x-2y + z +2t)
bài 2:tìm X bt
a>x.(x-1)-3x+3x=0
x (x-1) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=1\end{cases}}}\)
Vậy x=0 và x=1
b>3x.(x-2)+10-5x=0
3x(x-2) - 5 (x-2)=0
(3x-5) (x-2) =0
\(\Rightarrow\hept{\begin{cases}3x-5=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}3x=5\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=2\end{cases}}}}\)
c>x^3-5x^2+x-5=0
x^2 (x-5) + (x-5) =0
(x^2 +1)(x-5) =0
\(\Rightarrow\hept{\begin{cases}x^2+1=0\\x-5=0\end{cases}\Rightarrow\hept{\begin{cases}x^2=-1\\x=5\end{cases}\Rightarrow}\hept{\begin{cases}x\in\varphi\\x=5\end{cases}}}\)
Vậy x=5
d>x^4-2x^3+10x^2-20x=0
x^3 (x-2) + 10x(x-2) =0
(x^3 + 10x) (x-2) =0
x(x^2 + 10) (x-2) =0
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+10=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-10\\x=2\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x\in\varphi\\x=2\end{cases}}}}\)
Vậy x=0 và x=2
Tính nhanh :
a) 252 - 152 = (25 + 15)(25 - 15) = 40 . 10 = 400
b) 872 + 732 - 272 - 132 = (872 - 132) + (732 - 272)
= (87 + 13)(87 - 13) + (73 + 27)(73 - 27)
= 100 . 74 + 100 . 26 = 100 . (74 + 26) = 100 . 100 = 10000
Bài 1:
a)\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y+x-y\right)\left(x+y-x+y\right)=2x\cdot2y=2\left(x+y\right)\)
b) \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1+x+1\right)\left(3x+1-x-1\right)\\ =\left(4x+2\right)\cdot2x=4x\left(2x+1\right)\)
Bài 2:
a) \(25^2-15^2=\left(25-15\right)\left(25+15\right)=10\cdot40=400\)
b) \(87^2+73^2-27^2-13^2=\left(87^2-27^2\right)+\left(73^2-13^2\right)\\ =\left(87-27\right)\left(87+27\right)+\left(73-13\right)\left(73+13\right)\)
\(=60\cdot114+60\cdot86=60\cdot\left(114+86\right)=60\cdot200=12000\)
Bài 2:
a) \(x^3-0,25\cdot x=0\)
\(\Leftrightarrow x^2\left(x-0,25\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-0,25=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=0,25\end{array}\right.\)
b) \(x^2-10=-25\)
\(\Leftrightarrow x^2=-15\) (vô nghiệm0
c) \(4x^2-4x=-1\)
\(\Leftrightarrow4x^2-4x+1=0\)
\(\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
d) \(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\Leftrightarrow x=-\frac{1}{2}\)