Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Như thế này :
x^3 - 8x^2 + x + 42 = x^3 - 7x^2 - x^2 + 7x - 6x + 42
= ( x^3 - x^2 ) - ( 7x^2 - 7x ) - ( 6x - 42 )
= x^2.( x - 1 ) - 7x.( x - 1 ) - 6.( x - 7 )
= ( x^2 - 7x ).( x - 1 ) - 6.( x - 7 )
= x.( x- 7 ).( x - 1 ) - 6.( x - 7 ) = [ x.( x - 1 ) - 6 ].( x - 7 )
x^4 + 5x^3 - 7x^2 - 41x - 30 = x^4 + 5x^3 - 7x^2 - 35x - 6x - 30
= x.( x^3 + 6 ) + 5.( x^3 + 6 ) - 7x.( x + 5 )
= ( x + 5 ) ( x^3 + 6 ) - 7x.( x + 5 )
= ( x + 5 ).( x^3 - 7x + 5 )
CHÚC BẠN HỌC TỐT
a) 4x*(x+y)*(x+y+z)*(x+z)+y^2+z^2
=4*x*y*z^2+4*x^2*z^2+z^2+4*x*y^2*z+12*x^2*y*z+8*x^3*z+4*x^2*y^2+y^2+8*x^3*y+4*x^4
b) x^3-19x-30
=(x-5)*(x+2)*(x+3)
\(x^3-8x^2+x+42=x^3-7x^2-x^2+7x-6x+42\)
\(=x^2\left(x-7\right)-x\left(x-7\right)-6\left(x-7\right)\)
\(=\left(x-7\right)\left(x^2-x-6\right)\)
\(=\left(x-7\right)\left(x-3\right)\left(x+2\right)\)
Em xài cách khác :3
x3 - 8x2 + x + 42
Thử với x = 7 ta có : 73 - 8.72 + 7 + 42 = 0
Vậy 7 là nghiệm của đa thức. Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 7
Thực hiện phép chia x3 - 8x2 + x + 42 cho x - 7 ta được x2 - x - 6
Vậy x3 - 8x2 + x + 42 = ( x - 7 )( x2 - x - 6 )
Tiếp tục với x2 - x - 6
Thử với x = -2 ta có : (-2)2 - (-2) - 6 = 0
Vậy -2 là nghiệm của đa thức. Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x + 2
Thực hiện phép chia x2 - x - 6 cho x + 2 ta được x - 3
Vậy x2 - x - 6 = ( x - 3 )( x + 2 )
=> x3 - 8x2 + x + 42 = ( x - 7 )( x - 3 )( x + 2 )
\(a,x^2-5=x^2-\left(\sqrt{5}\right)^2=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
\(b,x^4+x^3+x+1=x^3.\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right).\left(x^3+1\right)=\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)
\(c,x^3-19x-30=x^3-25x+6x-30\)
\(=x.\left(x^2-25\right)+6.\left(x-5\right)\)
\(=x.\left(x-5\right)\left(x+5\right)+6.\left(x-5\right)\)
\(=\left(x-5\right).\left[x\left(x+5\right)+6\right]\)
\(=\left(x-5\right).\left(x^2+5x+6\right)\)
\(=\left(x-5\right).\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x.\left(x+2\right)+3.\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
a) \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x^2-6x+9\right)-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
a) x^2 - x - 30
= (x^2 + 5x) + (-6x - 30)
= x(x + 5) - 6(x + 5)
= (x + 5)(x - 6)
b) x^2 + x - 42
= (x^2 - 6x) + 7(x - 6)
= (x - 6)(x + 7)
Bạn Tớ ATSM trả lời đúng rồi đấy.
Mình xin được đóng góp thêm cho bạn.
Khi phân tích đa thức thành nhân tử cho đa thức có dạng\(x^2+ax+b\), ta sẽ tách \(a=c+d\)sao cho \(cd=b\).
Lúc này bạn có thể dễ dàng phân tích thành nhân tử như bạn ATSM trình bày.
Tổng quát hơn là dạng \(ax^2+bx+c\), lúc này bạn sẽ tách \(b=e+f\)sao cho \(ef=ac\) rồi phân tích tiếp.
Lên lớp 9 chúng ta sẽ được học CT tổng quát để giải nhanh hơn.
Trong kiểm tra, nếu đề không yêu cầu trình bày thì bạn có thể bấm máy tính để giải cho nhanh.
Chúc bạn học tốt!