Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3.\left(x-1\right)+3x^2.\left(x-1\right)+8x.\left(x-1\right)+12.\left(x-1\right)\)
\(=\left(x-1\right).\left(x^3+3x^2+8x+12\right)=\left(x-1\right).\left(x+2\right).\left(x^2+x+6\right)\)
p/s: sai sót bỏ qua
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) (x2-4x+3)(x2-10x+24)+8=((x2-x)-(3x-3))((x2-6x)-(4x-24))+8
=(x(x-1)-3(x-1))(x(x-6)-4(x-6))+8=(x-1)(x-3)(x-4)(x-6)+8=((x-1)(x-6))(x-3)(x-4))+8
=(x2-7x+6)(x2-7x+12)+8
Đặt x2-7x+6=a
Ta có : a(a+6)+8=a2+6a+8=(a+2)(a+4)=(x2-7x+8)(x2-7x+10)=(x2-7x+8)(x-5)(x-2)
b) Tương tự như câu a kết quả là (x-3)(x3+9x2+21x+9)
c) x4+x3+6x2+3x+9=(x4+x3+3x2)+(3x2+3x+9)=x2(x2+x+3)+3(x2+x+3)=(x2+x+3)(x2+2)
![](https://rs.olm.vn/images/avt/0.png?1311)
b)(x2+x+1)(x2+x+2)-12
Đặt t=x2+x+1
t(t+1)-12=t2+t-12
=(t-3)(t+4)=(x2+x+1-3)(x2+x+1+4)
=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
c)(x2+8x+7)(x2+8x+15)+15
Đặt t=x2+8x+7
t(t+8)+15=t2+8t+15
=(t+3)(t+5)
=(x2+8x+7+3)(x2+8x+7+15)
=(x2+8x+10)(x2+8x+22)
d)(x+2)(x+3)(x+4)(x+5)-24
=(x2+7x+10)(x2+7x+12)-24
Đặt t=x2+7x+10
t(t+2)-24=(t-4)(t+6)
=(x2+7x+10-4)(x2+7x+10+6)
=(x2+7x+6)(x2+7x+16)
=(x+1)(x+6)(x2+7x+16)
a/ Đặt x2 + 4x + 8 = a
Thì đa thức ban đầu thành
a2 + 3ax + 2x2 = (a2 + 2ax + x2) + (ax + x2)
= (a + x)2 + x(a + x) = (a + x)(a + 2x)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)
\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)
\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)
b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)
Đặt x^2 - 3x - 1 = A
\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)
\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)
\(=\left(A-9\right)\left(A-3\right)\)
Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)
\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)
c)\(x^3-x^2-5x+125\)
\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)
\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Mình có việc bận nên chỉ đưa được kết quả ý d) thật lòng mong các bạn tự tham khảo và giải
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(\Leftrightarrow\left(x+2\right)3x\)
b. \(x^3+3x^2-4\) =\(x^3-x^2+4x^2-4\)
=\(x^2\left(x-1\right)+4\left(x-1\right)\left(x^2+4x+4\right)\)
=\(\left(x-1\right)\left(x+2\right)^2\)
\(x^3+3x^2-4=x^3-1+3x^2-3\)
=\(\left(x-1\right)\left(x^2+x+1\right)+3\left(x-1\right)\left(x+1\right)\)
=\(\left(x-1\right)\left(x^2+x+1+3x+3\right)\)
=\(\left(x-1\right)\left(x+2\right)^2\)