Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x+1\right)\left(x^2+x+1\right)\)
b) \(x^5+x+1\)
\(=x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
c) \(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
d) \(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^3-x-1\right)\left(x^2-x+1\right)\)
A/ \(2x^2+7x+5=2\left(x^2+2x+1\right)+3x+3=2\left(x+1\right)^2+3\left(x+1\right)\)
\(=\left(x+1\right)\left(2x+5\right)\)
B/ \(x^2-4x-5=\left(x^2-4x+4\right)-9=\left(x-2\right)^2-3^2=\left(x-5\right)\left(x+1\right)\)
C/ \(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
D/\(x^4+4x^2-5=\left(x^4+4x^2+4\right)-9=\left(x^2+2\right)^2-3^2=\left(x^2-1\right)\left(x^2+5\right)=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) = 2x^2 + 2x +5x + 5 = 2x(x+1) + 5(x+1) = (2x+5)(x+1)
b) = x^2 + x - 5x - 5 = x(x-1) - 5(x-1) = (x-5)(x-1)
c) = x^3 ( x+1) + x+1 = (x^3+1) (x+1) = (x+1)^2 * (x^2 - x +1)
d) = x^4 - x^2 + 5x^2 -5 = x^2 (x^2-1) + 5(x^2-1) = (x^2+5)(x-1)(x+1)
a) \(x^7+x^5+1\)
\(=x^7+x^6+x^5-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b) \(x^8+x^4+1\)
\(=x^8-x^6+x^4+x^6-x^4+x^2+x^4-x^2+1\)
\(=x^4\left(x^4-x^2+1\right)+x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^4+x^3+x^2-x^3-x^2-x+x^2+x+1\right)\left(x^4-x^2+1\right)\)
\(=\left[x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
a) = (x + 1)^3 - 27z^3 = (x+1 - 3z)( (x+1)^2 + 3z(x+1) + 9z^2 )
b)= x^2 + x+ 3x + 3 = x (x+1) +3 (x+1) =(x+3)(x+1)
c) = 2x^2 - 2x + 5x - 5 = 2x(x-1) + 5(x-1) = (2x+5)(x-1)
d) = (a^2 + 1 - 2a)(a^2 +2a +1) = (a-1)^2 * (a+1)^2
e) = x^3 ( x-1) - (x^2 - 1) = x^3 ( x-1) - (x+1)(x-1) = (x^3 -x -1)(x-1)
Ta có : \(x^8+14x^4+1\)
\(=x^8+2.x^4.7+1\)
\(=x^8+2.x^4.7+49-48\)
\(=\left(x^4+7\right)^2-48\)
\(=\left(x^4+7-\sqrt{48}\right)\left(x^4+7+\sqrt{48}\right)\)
a/\(=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)
\(=\left(x^4+1+2x^2\right)^2-4x^2\left(x^4+1-2x^2\right)=\left(x^4+2x^2+1\right)-\left(2x^3-2x\right)^2\)
\(=\left(x^4+2x^3+2x^2-2x+1\right)\left(x^4-2x^3+2x^2+2x+1\right)\)
b/\(=\left(x^4+1\right)^2+96x^4=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)=\left(x^4+8x^2+1\right)-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
A/ \(16x-5x^2-3=\left(15x-3\right)-\left(5x^2-x\right)=3\left(5x-1\right)-x\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)
B/ \(x^3-3x^2+1-3x=\left(x^3-4x^2+x\right)+\left(x^2-4x+1\right)=x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
C/ \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
D/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)
\(b,a^6+a^4+a^2b^2+b^4-b^6=\left(a^6-b^6\right)+\left(a^4+a^2b^2+b^4\right)=\left(a^2-b^2\right)^3+\left(a+b\right)^2\)
bạn tự làm ra lun vs lại câu c/ cũng khá dễ đấy ngày mai nhớ k nha\(a,3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)=3\left(x^2+x+1\right)^2-\left(x^2+x+1\right)^2=\left(x^2+x+1\right)^2\left(3-1\right)=\left(x^4+x^2+1\right)4\)
a/ \(E=a^6+a^4+a^2b^2+b^4-b^6\)
\(E=\left[\left(a^2\right)^2+2a^2b^2+\left(b^2\right)^2\right]+\left(a^6-b^6\right)-a^2b^2\)
\(E=\left[\left(a^2+b^2\right)^2-\left(ab\right)^2\right]+\left(a^3-b^3\right)\left(a^3+b^3\right)\)
\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left[1+\left(a-b\right)\left(a+b\right)\right]\)
\(E=\left(a^2-ab+b^2\right)\left(a^2+ab+b^2\right)\left(1+a^2-b^2\right)\)
\(a^6+a^4+a^2b^2+b^4-b^6\)
\(a^2\left(a^4+a^2b^2+b^4\right)-b^2\left(a^4+a^2b^2+b^4\right)+\left(a^4+a^2b^2+b^4\right)\)
\(=\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2+1\right)\)
\(=\left(a^2+b^2+ab\right)\left(a^2+b^2-ab\right)\left(a^2-b^2+1\right)\)
a) 4(x2-y2)-8(x-ay)-4(a2-1)
=> 4x2-4y2-8x+8ay-4a2+4
=> 4(x2-y2-2x+2ay-a2+1)
c) a5+a4+a3 +a2 +a+1
=> a(a4+a3+a2+a+1)+1