\((5x-10)(x^2 -1)-(3x-6)(x^2 -2x+1)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2023

\(\left(5x-10\right)\left(x^2-1\right)-\left(3x-6\right)\left(x^2-2x+1\right)\)

\(=\left(5x-10\right)\left(x-1\right)\left(x+1\right)-\left(3x-6\right)\left(x-1\right)^2\)

\(=\left(x-1\right)\left[\left(5x-10\right)\left(x+1\right)-\left(3x-6\right)\left(x-1\right)\right]\)

\(=\left(x-1\right)\left[5\left(x-2\right)\left(x+1\right)-3\left(x-2\right)\left(x-1\right)\right]\)

\(=\left(x-1\right)\left[\left(x-2\right)\left(5x+5-3x+3\right)\right]\)

\(=\left(x-1\right)\left[\left(x-2\right)\left(2x+8\right)\right]\)

\(=\left(x-1\right)\left(x-2\right)\left(2x+8\right)\)

 

19 tháng 12 2018

\(a,6x^2-9x=3x\left(x-3\right)\)

\(b,x^3-2x^2-3x+6\)

\(=\left(x^3-2x^2\right)-\left(3x-6\right)\)

\(=x^2\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x^2-3\right)\left(x-2\right)\)

\(e,2x\left(x-y\right)-3y\left(x-y\right)\)

\(=\left(2x-3y\right)\left(x-y\right)\)

19 tháng 12 2018

a) 6x2 - 9x

= 3x (2x - 3)

b) x3 - 2x2 - 3x + 6

= x2(x - 2) - 3 (x - 2)

=(x - 2) (x2 - 3)

c) x2 - 4x + 4 - 9y2

= (x - 2)2 - 9y2

=(x - 2 - 3y)(x - 2 + 3y)

e) 2x(x - y) - 3y(x - y)

= (x - y)(2x - 3y)

xin lỗi mình học ngu nên không biết làm nhìu nha

28 tháng 8 2018

Gợi ý:

a) Đặt  \(x^2+3x+1=a\)

b)  \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt     \(x^2+8x+11=a\)

c)  \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt    \(x^2+7x+11=a\)

d) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)

Đặt   \(12x^2+11x-1=a\)

24 tháng 8 2019

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo câu e nhé!

20 tháng 4 2017

Bài giải:

a) x2 – 3x + 2 = a) x2 – x - 2x + 2 = x(x - 1) - 2(x - 1) = (x - 1)(x - 2)

Hoặc x2 – 3x + 2 = x2 – 3x - 4 + 6

= x2 - 4 - 3x + 6

= (x - 2)(x + 2) - 3(x -2)

= (x - 2)(x + 2 - 3) = (x - 2)(x - 1)

b) x2 + x – 6 = x2 + 3x - 2x – 6

= x(x + 3) - 2(x + 3)

= (x + 3)(x - 2).

c) x2 + 5x + 6 = x2 + 2x + 3x + 6

= x(x + 2) + 3(x + 2)

= (x + 2)(x + 3)

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)

27 tháng 7 2019

x(y - z) + 2(z - y)

= x(y - z) - 2(y - z)

= (x - 2)(y - z)

(2x - 3y)(x - 2) - (x + 3)(3y - 2x)

= (2x - 3y)(x - 2) + (x + 2)(2x - 3y)

= (2x - 3y)(x - 2 + x + 2)

= 2x(2x - 3y)

27 tháng 7 2019

1/\(x\left(y-z\right)+2\left(z-y\right)\)\(=\left(y-z\right)\left(x-2\right)\)

2/\(\left(2x-3y\right)\left(x-2\right)-\left(x+3\right)\left(3y-2x\right)\)\(=\left(2x-3y\right)\left(x-2+x+3\right)\)

\(=\left(2x-3y\right)\left(2x+1\right)\)

10 tháng 9 2019

1) 

a) \(2x^2-12x+18+2xy-6y\)

\(=2x^2-6x-6x+18+2xy-6y\)

\(=\left(2xy+2x^2-6x\right)-\left(6y+6x-18\right)\)

\(=x\left(2y+2x-6\right)-3\left(2y+2x-6\right)\)

\(=\left(x-3\right)\left(2y+2x-6\right)\)

\(=2\left(x-3\right)\left(y+x-3\right)\)

b) \(x^2+4x-4y^2+8y\)

\(=x^2+4x-4y^2+8y+2xy-2xy\)

\(=\left(-4y^2+2xy+8y\right)+\left(-2xy+x^2+4x\right)\)

\(=2y\left(-2y+x+4\right)+x\left(-2y+x+4\right)\)

\(=\left(2y+x\right)\left(-2y+x+4\right)\)

2)  \(5x^3-3x^2+10x-6=0\)

\(\Leftrightarrow x^2\left(5x-3\right)+2\left(5x-3\right)=0\Leftrightarrow\left(x^2+2\right)\left(5x-3\right)=0\)

Mà \(x^2+2>0\Rightarrow5x-3=0\Rightarrow x=\frac{3}{5}\)

\(x^2+y^2-2x+4y+5=0\)

\(\Leftrightarrow x^2+y^2-2x+4y+4+1=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

3)\(P\left(x\right)=x^2+y^2-2x+6y+12\)

\(P\left(x\right)=x^2+y^2-2x+6y+1+9+2\)

\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\)

Vậy \(P\left(x\right)_{min}=2\Leftrightarrow\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}\)

Bài làm

a) 2x2 - 12x + 18 + 2xy - 6y

= 2x2 - 6x - 6x + 18 + 2xy - 6y 

= ( 2xy + 2x2 - 6x ) - ( 6y + 6x - 18 )

= 2x( y + x - 3 ) - 6( y + x - 3 )

= ( 2x - 6 ) ( y + x - 3 )

# Học tốt #

AH
Akai Haruma
Giáo viên
19 tháng 3 2020

a.

$4(x+5)(x+6)(x+10)(x+12)=3x^2$

$4[(x+5)(x+12)][(x+6)(x+10)]=3x^2$

$4(x^2+17x+60)(x^2+16x+60)=3x^2$

Đặt $x^2+16x+60=a$ thì pt trở thành:

$4(a+x)a=3x^2$

$4a^2+4ax-3x^2=0$

$4a^2-2ax+6ax-3x^2=0$

$2a(2a-x)+3x(2a-x)=0$

$(2a-x)(2a+3x)=0$

Nếu $2a-x=0\Leftrightarrow 2(x^2+16x+60)-x=0$

$\Leftrightarrow 2x^2+31x+120=0\Rightarrow x=\frac{-15}{2}$ hoặc $x=-8$

Nếu $2a+3x=0\Leftrightarrow 2(x^2+16x+60)+3x=0$

$\Leftrightarrow 2x^2+35x+120=0\Rightarrow x=\frac{-35\pm \sqrt{265}}{4}$

AH
Akai Haruma
Giáo viên
19 tháng 3 2020

b.

$(x+1)(x+2)(x+3)(x+6)=120x^2$

$[(x+1)(x+6)][(x+2)(x+3)]=120x^2$

$(x^2+7x+6)(x^2+5x+6)=120x^2$

Đặt $x^2+6=a$ thì pt trở thành:

$(a+7x)(a+5x)=120x^2$

$\Leftrightarrow a^2+12ax-85x^2=0$

$\Leftrightarrow a^2-5ax+17ax-85x^2=0$

$\Leftrightarrow a(a-5x)+17x(a-5x)=0$

$\Leftrightarrow (a-5x)(a+17x)=0$

Nếu $a-5x=0\Leftrightarrow x^2+6-5x=0$

$\Leftrightarrow (x-2)(x-3)=0\Rightarrow x=2$ hoặc $x=3$

Nếu $a+17x=0\Leftrightarrow x^2+17x+6=0$

$\Rightarrow x=\frac{-17\pm \sqrt{265}}{2}$

Vậy.........

16 tháng 9 2016

A/ \(16x-5x^2-3=\left(15x-3\right)-\left(5x^2-x\right)=3\left(5x-1\right)-x\left(5x-1\right)=\left(5x-1\right)\left(3-x\right)\)

B/ \(x^3-3x^2+1-3x=\left(x^3-4x^2+x\right)+\left(x^2-4x+1\right)=x\left(x^2-4x+1\right)+\left(x^2-4x+1\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

C/ \(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

D/ \(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=3x\left(x+2\right)\)

16 tháng 9 2016

47554