Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x( x - 1 ) - x( 1 - x )2 - ( 1 - x )3
= 2x( x - 1 ) - x( x - 1 )2 + ( x - 1 )3
= ( x - 1 )[ 2x - x( x - 1 ) + ( x - 1 )2 ]
= ( x - 1 )( 2x - x2 + x + x2 - 2x + 1 )
= ( x - 1 )( x + 1 )
Ta có: \(2x\left(x-1\right)-x\left(1-x\right)^2-\left(1-x\right)^3\)
\(=\left(x-1\right)\left(2x-x^2+x+x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\)
\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1=\left(x-3\right)^2\left(x^2-1\right)-\left(x^2-1\right)=\left(x^2-1\right)\left[\left(x-3\right)^2-1\right]=\left(x-1\right)\left(x+1\right)\left(x-4\right)\left(x-2\right)\)
\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)
\(=\left(x-3\right)^2\cdot\left(x-1\right)\left(x+1\right)-\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\cdot\left(x+1\right)\left(x-2\right)\left(x-4\right)\)
1, \(^{x^3-2x^2+2x-13
}\)
\(=x.\left(x^2-2x+2\right)-13\)
\(=x.\left(x^2+2\right)-13\)
3,\(x^3-x^2-5x+12\)
\(=x.\left(x^2-x-5\right)+12\)
\(=x.\left(x-5\right)+12\)
mình chỉ giúp bạn được như vậy thôi mong bạn thông cảm chúc bạn học tốt
a) x.(1-x)+(x-1)2
=x.1-x2+x2-2.x2.1+12
=x-x2+x2-2.x2+1
=(-x2+x2-2x2)+1
=-2x2+1
b)(x+1)2-3.(x+1)
=x2+2.x2.1+12-3.x+3
=x2+2.x2+1-3x+3
=(x2+2x2)+(1+3)-3x
=3x2-3x+4
c)3x.(x-1)2-(1-x)3
=3x.x2-2,x2.1+12-13-3.12.x+3.x.12=3x.x2-2x2+1-1-3x+3x=(3x-3x+3x)(x2-2x2)(1-1)=3x.(-x2)
\(x^5-3x^4-x^3-x^2+3x+1\)
\(=\left(x^5-x^2\right)-\left(3x^4-3x\right)-\left(x^3-1\right)\)
\(=x^2\left(x^3-1\right)-3x\left(x^3-1\right)-\left(x^3-1\right)\)
\(=\left(x^3-1\right)\left(x^2-3x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-\frac{3}{2}-\frac{\sqrt{13}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{13}}{2}\right)\)
\(x^5-3x^4-x^3-x^2+3x+1\)\(1\)\(=\left(x^5-x^4\right)-\left(2x^4-2x^3\right)-\left(3x^3-3x^2\right)-\left(4x^2-4x\right)-\left(x-1\right)\)
\(=x^4\left(x-1\right)-2x^3\left(x-1\right)-3x^2\left(x-1\right)-4x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4-2x^3-3x^2-4x-1\right)\)
\(x^8+x^7+1\)
\(=x^8+x^7+x^6-x^6+x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-xx+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)\)
\(+\left(x^7-x^5+x^4-x^2+x\right)\)
\(+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2\left[x^2\left(x^2-1\right)+2\left(x+1\right)\right]\)
\(=x^2\left[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)\right]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
\(=x^2\left(x+1\right)\left(x^3-2x^2+2x+x^2-2x+2\right)\)
\(=x^2\left(x+1\right)\left[x\left(x^2-2x+2\right)+\left(x^2-2x+2\right)\right]\)
\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
\(x^3+1\)
\(=x^3+1^3\)
\(=\left(x+1\right)\left(x^2-x+1\right)\)
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)