\(x\sqrt{x}+x-y+y\sqrt{x}-xy\sqrt{x}-xy\sqrt{y}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

\(x\sqrt{x}+x-y+y\sqrt{x}-xy\sqrt{x}-xy\sqrt{y}=\left(x\sqrt{y}+y\sqrt{x}\right)+\left(x-y\right)-\left(xy\sqrt{x}+xy\sqrt{y}\right)\)

\(=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{xy}+\sqrt{x}-\sqrt{y}-xy\right)\)

\(A,ĐKXĐ:x;y\ge0\)

\(A=\sqrt{xy}-2\sqrt{y}-5\sqrt{x}+10\)

\(=\sqrt{y}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)\)

\(=\left(\sqrt{x}-2\right)\left(\sqrt{y}-5\right)\)

\(ĐKXĐ:x;y\ge0\)

\(B=a\sqrt{x}+b\sqrt{y}-\sqrt{xy}-ab\)

\(=\left(a\sqrt{x}-\sqrt{xy}\right)+\left(b\sqrt{y}-ab\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)+b\left(\sqrt{y}-a\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\sqrt{x}\left(a-\sqrt{y}\right)-b\left(a-\sqrt{y}\right)\)

\(=\left(a-\sqrt{y}\right)\left(\sqrt{x}-b\right)\)

2 tháng 5 2017

\(xy-y\sqrt{x}+\sqrt{x}-1\)

\(=y\left(x-\sqrt{x}\right)+\left(\sqrt{x}-1\right)\)

\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\left(\sqrt{x}-1\right)\)

\(\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)

29 tháng 9 2020

\(xy-y\sqrt{x}+\sqrt{x}-1\)

\(=\left(\sqrt{x}\right)^2.y-y\sqrt{x}+\sqrt{x}-1\)

\(=y\sqrt{x}\left(\sqrt{x}-1\right)+\sqrt{x}-1\)

\(=\left(\sqrt{x}-1\right)\left(y\sqrt{x}+1\right)\)

25 tháng 9 2017

\(\sqrt{xy}+1+\sqrt{x}+\sqrt{y}\)

=\(\sqrt{x}\left(\sqrt{y}+1\right)+\left(\sqrt{y}+1\right)\)

\(=\left(\sqrt{y}+1\right)\left(\sqrt{x}+1\right)\)

11 tháng 9 2018

với a,b,x,y không âm ta có

a,\(ab+b\sqrt{a}+\sqrt{a}+1\)

\(=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

b, \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)

24 tháng 4 2017

a. \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)

b. \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)+\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(x+2\sqrt{xy}+y\right)=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)^2\)

11 tháng 10 2020

a= 98 b=35 c=122 và d=129

11 tháng 10 2020

a, \(5+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)

b, \(a-2\sqrt{a}=\sqrt{a}\left(\sqrt{a}-2\right)\)

c, \(x-\sqrt{xy}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)

d, \(x-y-\sqrt{x}-\sqrt{y}\)

\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)