Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ:
\(\hept{\begin{cases}x-3\ne0,9-x^2\ne0,x+3\ne0\\1-\frac{x+1}{x+3}\ne0\end{cases}}\Leftrightarrow x\ne\pm3\).
\(M=\left(\frac{3+x}{x-3}+\frac{18}{9-x^2}+\frac{x-3}{x+3}\right)\div\left(1-\frac{x+1}{x+3}\right)\)
\(M=\frac{\left(3+x\right)\left(x+3\right)-18+\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\div\frac{2}{x+3}\)
\(M=\frac{x^2+6x+9-18+x^2-6x+9}{\left(x-3\right)\left(x+3\right)}\times\frac{x+3}{2}\)
\(M=\frac{2x^2\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}\)
\(M=\frac{x^2}{x-3}\)
b) \(M=\frac{x^2}{x-3}=\frac{x^2-3x+3x-9+9}{x-3}=x+3+\frac{9}{x-3}\inℤ\Leftrightarrow\frac{9}{x-3}\inℤ\)
mà \(x\inℤ\)nên \(x-3\inƯ\left(9\right)=\left\{-9,-3,-1,1,3,9\right\}\Leftrightarrow x\in\left\{-6,0,2,4,6,12\right\}\).
a) ĐKXĐ : x ≠ ±3
\(=\left[\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\frac{18}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\right]\div\left(\frac{x+3}{x+3}-\frac{x+1}{x+3}\right)\)
\(=\left[\frac{x^2+6x+9-18+x^2-6x+9}{\left(x-3\right)\left(x+3\right)}\right]\div\left(\frac{x+3-x-1}{x+3}\right)\)
\(=\frac{2x^2}{\left(x-3\right)\left(x+3\right)}\div\frac{2}{x+3}=\frac{2x^2}{\left(x-3\right)\left(x+3\right)}\times\frac{x+3}{2}=\frac{x^2}{x-3}\)
b) \(M=\frac{x^2}{x-3}=\frac{x^2-3x+3x-9+9}{x-3}=\frac{x\left(x-3\right)+3\left(x-3\right)+9}{x-3}=x+3+\frac{9}{x-3}\)
Vì x nguyên nên x + 3 nguyên
nên để M nguyên thì 9/x-3 nguyên
hay x - 3 ∈ Ư(9) [ bạn tự xét tiếp :)) ]
a. \(x^2-2xy+x^3y=x\left(x-2y+x^2y\right)\)
b. \(7x^2y^2+14xy^2-21^2y=7y\left(x^2y+2xy-63\right)\)
c. \(10x^2y+25x^3+xy^2=x\left(5x+y\right)^2\)
Cho các sốx y εR , � thoả mãn: 5x2 + 2y2 - 6xy - 4x - 6y + 13 = 0 . Tính giá trị của biểuthức: M= (2x - y)2022 + (x - 2)2021 + (y - 3)2020
Đề bài mình thấy là 4xy thì làm được nha!
\(5x^2+2y^2-4xy-4x-6y+13=0\)
\(\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+\left(4x^2+y^2-4xy\right)=0\)
\(\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2=0\)
Ta thấy: \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge\\\left(2x-y\right)^2\ge0\end{cases}0\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2\ge0}\)
Mà \(\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2=0\)
Bạn nhận xét rồi làm nốt nha!
Ta có:\(\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
với \(x=-10;y=2\) ,ta có:
\(\left(-10\right)^3-2^3=-1000-8=-1008\)
với \(x=-1;y=0\)
\(\left(-1\right)^3-0^3=-1-0=-1\)
với \(x=2;y=-1\) ,ta có:
\(2^3-\left(-1\right)^3=8-\left(-1\right)=8+1=9\)
với \(x=-0,5;y=1,25\), ta có:
\(\left(-0,5\right)^3-1,25^3=0-2=-2\)
Ta có bảng sau;
Giá trị của x và y |
Giá trị của biểu thức \(\left(x-y\right)\left(x^2+xy+y^2\right)\) |
\(x=-10;y=2\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-1008\) |
\(x=-1;y=0\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-1\) |
\(x=2;y=-1\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=9\) |
\(x=-0,5;y=1,25\) | \(\left(x-y\right)\left(x^2+xy+y^2\right)=-2\) |
Trước hết, ta làm tính nhân để rút gọn biểu thức, ta được:
(x - y)(x2 + xy + y2) = x . x2 + x . xy + x . y2 + (-y) . x2 + (-y) . xy + (-y) . y2
= x3 + x2y + xy2 – yx2 – xy2 – y3 = x3 – y3
Sau đó tính giá trị của biểu thức x3 – y3
Ta có:
Khi x = -10; y = 2 thì A = (-10)3 – 23 = -1000 – 8 = 1008
Khi x = -1; y = 0 thì A = (-1)3 – 03 = -1
Khi x = 2; y = -1 thì A = 23 – (-1)3 = 8 + 1 = 9
Khi x = -0,5; y = 1,15 thì
A = (-0,5)3 – 1,253 = -0,125 – 1.953125 = -2,078125
z2 - (x-1)2 + 2(x-1) -1
= z2 - [ (x-1)2 - 2.(x-1).1 +12]
= z2 - (x-1-1)2
= z2- (x-2)2
= (z-x+2)(z+x-2)
`z^2 - (x-1)^2 + 2 (x-1)-1`
`= z^2 -[(x-1)^2 - 2 (x-1).1+1^2]`
`= z^2 - (x-2)^2`
`= (z-x+2)(z+x-2)`
1.a/(x²+2x+1)(x+1)
=(x+1)(x²+2x+1)
=x(x²+2x+1)+1(x²+2x+1)
=x³+2x²+x+x²+2x+1
=x³+3x²+3x+1
c/(x-5)(x³-2x²+x-1)
=x(x³-2x²+x-1)-5(x³-2x²+x-1)
=x⁴-2x³+x²-1-5x³+10x²-5x+5
=x⁴-7x³+11x²+4-5x
=x⁴-7x³+11x²-5x+4
3.
Giá trị của x và y | Giá trị của biểu thức(x+y) (x²-Xy+y²) |
x=-10,y =2 | -1008 |
x=-1,y=0 | -1 |
x=2,y=-1 | 7 |
x=-0,5;y=1,25 | -2,08125 |
4).
(x-5)(3x+3)-3x(x-3)+3x+7
= 3x2+3x-15x-15-3x2+9x+3x+7
=(3x2-3x2)+(3x-15x+9x+3x)-15+7
=0 + 0 -8= -8
Vậy biểu thức được chứng minh
5). Sai đề rồi bn ơi!
Answer:
\(x^4+x^2+1\)
\(=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2+1-x\right)\left(x^2+1+x\right)\)
x2(x2+1)