Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2004x^2+2003x+2004\)
\(=x^4+2004x^2+2004x-x+2004\)
\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)
x^4+2005x^2+2004x+2005
=x^4-x+2005x^2+2005x+2005
=x(x^3-1)+2005(x^2+x+1)
=x(x-1)(x^2+x+1)+2005(x^2+x+1)
=(x^2+x+1)(x^2-x+2005)
\(x^5+x^4+2\)
\(=x^5+x^4+x^2-x^2+1+1\)
\(=\left(x^5-x^2\right)+\left(x^4+x^2+1\right)\)
\(=\left(x^5-x^2\right)+\left(x^4+2x^2-x^2+1\right)+1\)
\(=x^2\left(x^3-1\right)+\left(x^4+2x^2-x^2+1\right)+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(\left(x^2+1\right)^2-x^2\right)+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)
\(=\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+x^2+1-x\right)+1\)
\(=\left(x^2+x+1\right)\left(x^3+1-x\right)+1\)
Nghịch xíu :v
a, \(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)-2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-2x+2\right)\)
b, \(x^2+4x+3\)
\(=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
Chúc bạn học tốt!!!
\(x^4+3x+4\)
< không thể phân tích >
mk nghi đề là :
\(x^3-3x^2+4\)
\(=x^3+x^2-4x^2+4\)
\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x^2-4\left(x-1\right)\right)\right]\)
\(=\left(x+1\right)\left(x^2-4x+4\right)\)
\(=\left(x+1\right)\left(x-2\right)^2\)
Hoặc : \(x^4+3x^2-4\)
\(=x^4+4x^2-x^2-4\)
\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)
\(=\left(x^2+4\right)\left(x^2-1\right)\)
\(=\left(x^2-4\right)\left(x-1\right)\left(x+1\right)\)
_bạn xem lại đề nha_
_Tử yên_
\(x^4+4y^4\)
\(=\left(x^2\right)^2+\left(2y^2\right)^2\)
\(=\left(x^2\right)^2+\left(2.2x^2y^2\right)+\left(2y^2\right)^2-\left(2.2x^2y^2\right)\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)
_Tử yên_
Mình xin lỗi nhé, để mình sửa lại : ^^
a) \(x^4+3x^2+4=\left(x^4+x^3+2x^2\right)+-\left(x^3+x^2+2x\right)+2\left(x^2+2x+2\right)\)
\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=\left(x^2-x+2\right)\left(x^2+x+2\right)\)
b) \(x^4+5x^2+9=\left(x^4+x^3+3x^2\right)-\left(x^3+x^2+3x\right)+3\left(x^2+x+3\right)\)
\(=x^2\left(x^2+x+3\right)-x\left(x^2+x+3\right)+3\left(x^2+x+3\right)=\left(x^2-x+3\right)\left(x^2+x+3\right)\)
\(x^4+2004x^2+2003x+2004\)
\(=x^4-x+2004x^2+2004x+2004\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)
\(x^4+2004x^2+2003x+2004\)
\(=x^4+2004x^2+2004x-x+2004\)
\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)