\(x^4+2004x^2+2003x+2004\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

       \(x^4+2004x^2+2003x+2004\)

\(=x^4-x+2004x^2+2004x+2004\)

\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)

7 tháng 10 2018

\(x^4+2004x^2+2003x+2004\)

\(=x^4+2004x^2+2004x-x+2004\)

\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)

18 tháng 8 2018

\(x^4+2004x^2+2003x+2004\)

\(=x^4+2004x^2+2004x-x+2004\)

\(=\left(x^4-x\right)+2004\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)+2004\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2004\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2004\right)\)

30 tháng 3 2019

tìm cặp số a,b thoả mãn điều kiện; 3b/a^2-4=1-125a-3b/6a+13=1-125a

4 tháng 2 2016

x^4+2005x^2+2004x+2005

=x^4-x+2005x^2+2005x+2005

=x(x^3-1)+2005(x^2+x+1)

=x(x-1)(x^2+x+1)+2005(x^2+x+1)

=(x^2+x+1)(x^2-x+2005)

23 tháng 9 2019

\(x^5+x^4+2\)

\(=x^5+x^4+x^2-x^2+1+1\)

\(=\left(x^5-x^2\right)+\left(x^4+x^2+1\right)\)

\(=\left(x^5-x^2\right)+\left(x^4+2x^2-x^2+1\right)+1\)

\(=x^2\left(x^3-1\right)+\left(x^4+2x^2-x^2+1\right)+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(\left(x^2+1\right)^2-x^2\right)+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)

\(=\left(x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+1+x\right)\cdot\left(x^2+1-x\right)+1\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+x^2+1-x\right)+1\)

\(=\left(x^2+x+1\right)\left(x^3+1-x\right)+1\)

27 tháng 10 2016

a, \(x^3-2x-4\) b, \(x^2+4x+3\) nhá

 

13 tháng 8 2017

Nghịch xíu :v

a, \(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)-2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2-2x+2\right)\)

b, \(x^2+4x+3\)

\(=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

Chúc bạn học tốt!!!

\(x^4+3x+4\)

< không thể phân tích >

mk nghi đề là :

\(x^3-3x^2+4\)

\(=x^3+x^2-4x^2+4\)

\(=x^2\left(x+1\right)-4\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left[\left(x^2-4\left(x-1\right)\right)\right]\)

\(=\left(x+1\right)\left(x^2-4x+4\right)\)

\(=\left(x+1\right)\left(x-2\right)^2\)

Hoặc : \(x^4+3x^2-4\)

\(=x^4+4x^2-x^2-4\)

\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)

\(=\left(x^2+4\right)\left(x^2-1\right)\)

\(=\left(x^2-4\right)\left(x-1\right)\left(x+1\right)\)

_bạn xem lại đề nha_

_Tử yên_

\(x^4+4y^4\)

\(=\left(x^2\right)^2+\left(2y^2\right)^2\)

\(=\left(x^2\right)^2+\left(2.2x^2y^2\right)+\left(2y^2\right)^2-\left(2.2x^2y^2\right)\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

_Tử yên_

15 tháng 7 2016

Mình xin lỗi nhé, để mình sửa lại : ^^

a) \(x^4+3x^2+4=\left(x^4+x^3+2x^2\right)+-\left(x^3+x^2+2x\right)+2\left(x^2+2x+2\right)\)

\(=x^2\left(x^2+x+2\right)-x\left(x^2+x+2\right)+2\left(x^2+x+2\right)=\left(x^2-x+2\right)\left(x^2+x+2\right)\)

b) \(x^4+5x^2+9=\left(x^4+x^3+3x^2\right)-\left(x^3+x^2+3x\right)+3\left(x^2+x+3\right)\)

\(=x^2\left(x^2+x+3\right)-x\left(x^2+x+3\right)+3\left(x^2+x+3\right)=\left(x^2-x+3\right)\left(x^2+x+3\right)\)