Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4+x^3+2x^2+x+1=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2+1\right)\)
b) \(4x^2-4x-3=4x^2+2x-6x-3=2x\left(2x+1\right)-3\left(2x+1\right)=\left(2x+1\right)\left(2x+3\right)\)
c) \(4x^4+81=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2+9\right)^2-36x^2=\left(2x^2-6x+9\right)\left(2x^2+6x-9\right)\)
d) \(x^2-6xy-25+9y^2=\left(x-3y\right)^2-25=\left(x-3y-5\right)\left(x-3y+5\right)\)
e) \(x^2-8y^2-2xy=x^2+2xy-4xy-8y^2=x\left(x+2y\right)-4y\left(x+2y\right)=\left(x+2y\right)\left(x-4y\right)\)
\(b.x^4+4x^2-5=x^4-x^2+5x^2-5\)
\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x^2-1\right)\)
\(=\left(x^2+5\right)\left(x-1\right)\left(x+1\right)\)
\(c.x^3-19x-30=x^3-25x+6x-30\)
\(=x\left(x-5\right)\left(x+5\right)+6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2+5x+6\right)\)
\(=\left(x-5\right)\left(x^2+2x+3x+6\right)\)
\(=\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]\)
\(=\left(x-5\right)\left(x+2\right)\left(x+3\right)\)
\(25-x^2+4xy-4y^2=5^2-\left(x-2y\right)^2=\left(5-x+2y\right)\left(5+x-2y\right)\)
\(x^4-4x^3+4x^2=x^2\left(x^2-4x+4\right)=x^2\left(x-2\right)^2\)
\(x^3-x^2-x+1=x^2\left(x-1\right)-\left(x-1\right)=\left(x^2-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)^2\)
\(a^5+27a^2=a^2\left(a^3+27\right)=a^2\left(a+3\right)\left(a^2-3a+9\right)\)
\(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)=\left(x-1\right)\left(x^2+x+1+3x\right)=\left(x-1\right)\left(x^2+4x+1\right)\)
\(4a^2b^2-\left(a^2+b^2-1\right)^2=\left(2ab+a^2+b^2-1\right)\left(2ab-a^2-b^2+1\right)=\left[\left(a+b\right)^2-1\right]\left[1-\left(a-b\right)^2\right]\)
\(\left(a+b-1\right)\left(a+b+1\right)\left(1+a-b\right)\left(1-a+b\right)\)
\(x^3-4x^2-8x+8 \)
\(=x^3+2x^2-6x^2-12x+4x+8\)
\(=x^2\left(x+2\right)-6x\left(x+2\right)+4\left(x+2\right) \)
\(=\left(x+2\right)\left(x^2-6x+4\right) \)
\(2x^3-12x^2+17x-2\)
\(=2x^3-4x^2-8x^2+16x+x-2\)
\(=2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2-8x+1\right)\)
\(a,\left(a^3-b^3\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
\(b,\left(x^2+1\right)^2-4x^2\)
\(=x^4+2x^2+1-4x^2\)
\(=x^4-2x^2+1\)
\(\left(x^2-1\right)^2\)
\(c\left(y^3+8\right)+\left(y^2-4\right)\)
\(=\left(y+2\right)\left(y^2-8y+4\right)+\left(y-2\right)\left(y+2\right)\)
\(=\left(y+2\right)\left(y^2-8y+4+y-2\right)\)
\(=\left(y+2\right)\left(y^2-7y+2\right)\)
a) ( a3 - b3) + ( a - b)2
= (a-b) (a2 + ab + b2 ) + (a-b)2
= (a-b) (a2 + ab + b2 +a -b )
hok tốt
a) Đặt t = x2
bthuc <=> t2 - 7t + 16
Từ đây ta không thể phân tích được :)
b) x3 - 2x2 + 5x - 4
= x3 - x2 - x2 + x + 4x - 4
= x2( x - 1 ) - x( x - 1 ) + 4( x - 1 )
= ( x - 1 )( x2 - x + 4 )
c) x3 - 2x2 + x - 3 ( phân tích hổng ra :)) )
d) 3x3 - 4x2 + 12x - 4 ( phân tích hổng ra p2 :)) )
e) 6x3 + x2 + x + 1
= 6x3 + 3x2 - 2x2 - x + 2x + 1
= 3x2( 2x + 1 ) - x( 2x - 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 3x2 - x + 1 )
f) 4x3 + 6x2 + 4x + 1
= 4x3 + 2x2 + 4x2 + 2x + 2x + 1
= 2x2( 2x + 1 ) + 2x( 2x + 1 ) + ( 2x + 1 )
= ( 2x + 1 )( 2x2 + 2x + 1 )
1)x(x2 - 19 - 30)
2)x(x2 - 7 - 6)
3)x(x2 + 4x - 7 - 10)
( 4 tích mình làm tiếp 3 câu cuối)
mk làm cho 1) các phần sau cũng z
1) = x2 - 22 + (x-2)2
= (x+2)(x-2) +(x-2)(x-2)
= (x-2)(x+2+x-2)
2x(x-2)