Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)=\left(x+6\right)\left(x-1\right)\)
\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)=\left(5x-1\right)\left(x+y\right)\)
\(7x-6x^2-2=3x-6x^2+4x-2=3x\left(1-2x\right)-2\left(1-2x\right)=\left(3x-2\right)\left(1-2x\right)\)
\(a,x^2+5x-6=x^2-x+6x-6\)
\(=x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x+6\right)\)
\(b,5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
\(c,7x-6x^2-2=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2x-1\right)\left(2-3x\right)\)
Ta có: A = x2 + 2x + y2 - 4y - 4 = (x2 + 2x + 1) + (y2 - 4y + 4) - 9 = (x + 1)2 + (y - 2)2 - 9
Ta luôn có: (x + 1)2 \(\ge\)0 \(\forall\)x
(y - 2)2 \(\ge\)0 \(\forall\)y
=> (x + 1)2 + (y - 2)2 - 9 \(\ge\)-9 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
vậy Min của A = -9 tại x = -1 và y = 2
\(=3xy\left(x+y\right)+3z^2\left(x+y\right)+3z\left(x^2+2xy+y^2\right)\)
\(=\)\(\left(x+y\right)\left(3xy+3z^2+3xz+3yz\right)=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
\(k\)mình nha !!!
\(x^5-3x^4-x^3-x^2+3x+1\)
\(=\left(x^5-x^2\right)-\left(3x^4-3x\right)-\left(x^3-1\right)\)
\(=x^2\left(x^3-1\right)-3x\left(x^3-1\right)-\left(x^3-1\right)\)
\(=\left(x^3-1\right)\left(x^2-3x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-\frac{3}{2}-\frac{\sqrt{13}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{13}}{2}\right)\)
\(x^5-3x^4-x^3-x^2+3x+1\)\(1\)\(=\left(x^5-x^4\right)-\left(2x^4-2x^3\right)-\left(3x^3-3x^2\right)-\left(4x^2-4x\right)-\left(x-1\right)\)
\(=x^4\left(x-1\right)-2x^3\left(x-1\right)-3x^2\left(x-1\right)-4x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4-2x^3-3x^2-4x-1\right)\)
PHÂN TÍCH THÀNH NHÂN TỬ X^2-Y^2-X-Y
= -(y-x+1)(y+x)
a) x2 - y2 - x -y
= (x-y)(x+y) - (x+y)
= (x+y)(x-y-1)
b) x2 - z2 - 2xy + y2
= (x-y)2 - z2
= (x-y-z)(x-y+z)
c) x6 - y6
= (x2)3 - (y2)3
= (x2 -y2)(x4 + x2y2 + y4)
= (x-y)(x+y)(x4 + x2y2+ y4)