Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
a) \(x^4+2x^2y+y^2=\left(x^2+y\right)^2\)
b) \(\left(2a+b\right)^2-\left(2b+a\right)^2=\left(2a+b+2b+a\right)\left(2a+b-2b-a\right)\)
\(=\left(3a+3b\right)\left(a-b\right)=3\left(a+b\right)\left(a-b\right)\)
c) \(\left(a^3-b^3\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left[a^2+ab+b^2+\left(a-b\right)\right]=\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
d) \(\left(x^2+1\right)^2-4x^2=\left(x^2+1-2x\right)\left(x^2+1+2x\right)=\left(x-1\right)^2\left(x+1\right)^2\)
e) \(\left(y^3+8\right)+\left(y^2-4\right)=\left(y+2\right)\left(y^2-y+2\right)\)
f) \(1-\left(x^2-2xy+y^2\right)=1-\left(x-y\right)^2=\left(1-x+y\right)\left(1+x-y\right)\)
g) \(x^4-1=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
h) ktra lại đề
m) \(\left(x-a\right)^4-\left(x+a\right)^4=-8ax\left(a^2+x^2\right)\)
a)
áp dụng hằng đẳng thức hiệu 2 bình phương
\(\left(x-2\right)^2-\left(4\right)^2=\left(x-2-4\right)\left(x-2+4\right)=\left(x-6\right)\left(x-2\right)\)
b)
áp dụng HDT : bình phương của 1 hiệu
\(\left(x-2y\right)^2-2.2.\left(x-2y\right)+2^2=\left(x-2y-2\right)^2=\left(x-2y-2\right)\left(x-2y-2\right)\)
c)
áp dụng HDT : bình phương của 1 hiệu
\(\left(a^2+1\right)^2-2.3.\left(a^2+1\right)+3^2=\left(a^2+1-3\right)^2=\left(a^2-2\right)^2=\left(a^2-2\right)\left(a^2-2\right)\)
d) áp dụng HDT : bình phương của 1 tồng
\(\left(x+y\right)^2+2.\frac{1}{2}.\left(x+y\right).x+\left(\frac{1}{2}x\right)^2=\left(x+y+\frac{1}{2}x\right)^2=\left(\frac{3}{2}x+y\right)\left(\frac{3}{2}x+y\right)\)
Chúc bạn học tốt nha!!!
T I C K ủng hộ nha
a) 9 -(x-y)2
= 32 - (x-y)2
= (3-x+y).(3+x-y)
b) (x2 +4)2 - 16x2
= (x2+4)2 - (4x)2
= (x2 + 4 -4x).(x2 + 4 +4x)
\(9-\left(x-y\right)^2\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3+x-y\right)\)
\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
a)Bạn xem lại đề được không
b)Đặt x^2 ra ngoài
c)Đặt x^3=t rồi quy đồng
d)Bt = -17(x^2-1), còn ẩn phụ gì nữa?
a/Dùng hằng đẳng thức A2-B2=(A+B)(A-B) phân tích được ngay
\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left(x-y+4+2x+3y-1\right)\left(x-y+4-2x-3y+1\right)\)
=\(\left(3x-2y+3\right)\left(4-x-4y\right)\)
b/Chắc chỉ phân tích hằng đẳng thức (A-B)2=A2-2ab+B2
\(49\left(y-4\right)^2-9y^2-3y-36=49y^2-392y+784-9y^2-3y-36\)
\(=40y^2-395y+748\)
Mình dùng biệt thức cho ra nghiệm vô tỉ, không biết cho phải tại mình tính sai hay đề thiếu nữa
c/Khai triển biểu thức ban đầu ta được
\(x\left(x-y\right)+y\left(y-x\right)=x^2-xy+y^2-xy=x^2-2xy+y^2=\left(x-y\right)^2\)
bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ
dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm
\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)
\(=4y^2+12xy+9y^2\)
\(2a.x^2-6x+9\)
\(=x^2-2.x.3+3^2\)
\(=\left(x-3\right)^2\)
a,\(\frac{1}{4}\left(a+b\right)^2-1=\left(\frac{a+b}{2}\right)^2-1^2=\left(\frac{a+b}{2}-1\right)\left(\frac{a+b}{2}+1\right)\)
b,\(9\left(x-y\right)^2-4\left(x-y\right)^2=\left(x-y\right)^2\left(9-4\right)=5\left(x-y\right)^2\)
c,\(\left(p-2q\right)^2-4\left(p+q\right)^2=\left(p-2q-2p-2q\right)\left(p-2q+2p+2q\right)\)
\(=\left(-p-4q\right)3p\)
d, \(25p^2m^4-\frac{1}{36}p^4=\left(5pm^2\right)^2-\left(\frac{p^2}{6}\right)^2=\left(5pm-\frac{p^2}{6}\right)\left(5pm+\frac{p^2}{6}\right)\)
a, \(\frac{1}{4}\left(a+b\right)^2-1=\left(\frac{1}{2}a+\frac{1}{2}b\right)^2-1=\left(\frac{a}{2}+\frac{b}{2}-1\right)\left(\frac{a}{2}+\frac{b}{2}+1\right)\)
b, \(9\left(x-y\right)^2-4\left(x-y\right)^2=\left(3x-3y\right)^2-\left(2x-2y\right)^2\)
\(=\left(3x-3y-2x+2y\right)\left(3x-3y+2x-2y\right)=5\left(x-y\right)^2\)
c, \(\left(p-2q\right)^2-4\left(p+q\right)^2=\left(p-2q\right)^2-\left(2p+2q\right)^2\)
\(=\left(p-2q-2p-2q\right)\left(p-2q+2p+2q\right)^2=9p^2\left(-p-4q\right)\)
d, \(25p^2m^4-\frac{1}{36}p^4=\left(5pm^2\right)^2-\left(\frac{1}{6}p^2\right)^2=\left(5pm^2-\frac{1}{6}p^2\right)\left(5pm^2+\frac{1}{6}p^2\right)\)
\(=p^2\left(5m^2-\frac{1}{6}p\right)\left(5m^2+\frac{1}{6}p\right)\)