Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(2,y\right)=0\)
\(\Leftrightarrow\left(5.2-3y+3\right)\left(4.2+2y-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}13-3y=0\\7+2y=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=\frac{13}{3}\\y=-\frac{7}{2}\end{cases}}\).
Phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)khi :
\(10x-13+4x-\left(4-x\right)\ne0\)
\(\Leftrightarrow10x-13+4x-4+x\ne0\)
\(\Leftrightarrow15x-17\ne0\)
\(\Leftrightarrow x\ne\frac{17}{15}\)
Phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)xác đinhk khi
\(\left(10x-13+4x\right)-\left(4-x\right)\ne0\)
\(\Leftrightarrow10x-13+4x-4+x\ne0\)
\(\Leftrightarrow15x-17\ne0\)
\(\Leftrightarrow15x\ne17\)
\(\Leftrightarrow x\ne\frac{17}{15}\)
Vậy phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)được xác đinh khi \(x\ne\frac{17}{15}\)
Ta có : \(x^2-6=x\)
\(\Leftrightarrow x^2-6-x=0\)
\(\Leftrightarrow x^2+2x-3x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-2;3\right\}\)
\(x^2-7x+12=0\)
\(\Leftrightarrow x^2-3x-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;4\right\}\)
Vậy nghiệm chung của 2 phương trình là x = 3
\(\frac{x^3+3x^2-4x-12}{x^2+x-6}=\frac{x\left(x^2+x-6\right)+2x^2+2x-12}{x^2+x-6}=\frac{\left(x+2\right)\left(x^2+x-6\right)}{x^2+x-6}\)
\(=x+2\)
Ta có:\(A\div B=\frac{x^3+3x^2-4x-12}{x^2+x-6}\)
\(=\frac{x^3+x^2-6x-2x^2-2x+12}{x^2-2x+3x-6}\)
\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)-6\left(x-2\right)}{x\left(x-2\right)+3\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x^2+x-6\right)}{\left(x-2\right)\left(x+3\right)}\)
\(=\frac{\left(x-2\right)\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=x-2\)
Thay \(x=2\)
Ta có:\(6.2+m=3.2+3\)
\(\Leftrightarrow12+m=9\)
\(\Leftrightarrow m=-3\)
Cho \(x=1\).Khi đó PT ẩn x \(f\left(x;y\right)=0\)tương đương với :
\(\left(2-4y+2\right)\left(5+2y-4\right)=0\)
\(\Leftrightarrow\left(4-4y\right)\left(1+2y\right)=0\)
\(\Leftrightarrow4\left(1-y\right)\left(1+2y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}1-y=0\\1+2y=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
Vậy \(y\in\left\{1;-\frac{1}{2}\right\}\)thì PT ẩn x \(f\left(x;y\right)=0\)nhận \(x=1\)làm nghiệm
Vì x = 1 là nghiệm phương trình nên
Thay x = 1 vào phương trình trên ta được :
PT <=> \(\left(2-4y+2\right)\left(5+2y-4\right)=\left(4-4y\right)\left(1+2y\right)\)
Đặt \(\left(4-4y\right)\left(1+2y\right)=0\Leftrightarrow y=1;y=-\frac{1}{2}\)
Vì \(f\left(x;y\right)=0\)
\(\Rightarrow\left(4x-2y+2\right)\left(5x+4y-4\right)=0\)(1)
Và f(x;y) nhận x=3 làm nghiệm nên thay x=3 vào pt (1), ta được :
\(\left(4.3-2y+2\right)\left(5.3+4y-4\right)=0\)
\(\Leftrightarrow\left(14-2y\right)\left(11+4y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}14-2y=0\\11+4y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2y=14\\4y=-11\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=7\\y=\frac{-11}{4}\end{cases}}}\)
Vậy y \(\in\left(7;\frac{-11}{4}\right)\)thì pt ẩn x f(x,y) = 0 nhận x= làm nghiệm
\(8x^2+59x+66=8x^2+48x+11x+66\)
\(=8x\left(x+6\right)+11\left(x+6\right)=\left(8x+11\right)\left(x+6\right)\)
\(8x^2+59x+66=8x^2+48x+11x+66=8x\left(x+6\right)+11\left(x+6\right)\)
\(=\left(8x+11\right)\left(x+6\right)\)