![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=cos^2a+cos^2b+2cosa.cosb+sin^2a+sin^2b+2sina.sinb\)
\(=cos^2a+sin^2a+cos^2b+sin^2b+2\left(cosa.cosb+sina.sinb\right)\)
\(=2+2cos\left(a-b\right)=2+2cos\frac{\pi}{3}=3\)
\(\left(cosa+sina\right)^2=\frac{36}{25}\Leftrightarrow1+2sina.cosa=\frac{36}{25}\)
\(\Rightarrow sin2a=\frac{36}{25}-1=\frac{11}{25}\)
\(cos2a=cos^2a-sin^2a=\left(cosa-sina\right)\left(cosa+sina\right)>0\)
\(\Rightarrow cos2a=\sqrt{1-sin^22a}=\frac{6\sqrt{14}}{25}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng vào tổng ta có
\(\left(a+b-2c\right)^3+\left(b-c-2a\right)^3+\left(c+a-2b\right)^3\)
Đặt
\(M=\left(a+b-2c+b+c-2a+a+c-2b\right)^3\)
=> M=0
\(N=3\left(a+b-2c+b+c-2a\right)\left(b+c-2a+a+c-2b\right)\left(a+c-2b+a+b-2c\right)\)
\(\Rightarrow N=3\left(c-a\right)\left(a-b\right)\left(b-c\right)\)
Để ý : M+N=B
=> \(B=0+3\left(c-a\right)\left(a-b\right)\left(b-c\right)\)
=> \(B=3\left(c-a\right)\left(a-b\right)\left(b-c\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x3 +x+2
=\(\left(x^3+x^2\right)-\left(x^2+x\right)+\left(2x+2\right)\)
=\(\left(x+1\right)\left(x^2-x+2\right)\)
b) x3-2x-1
=\(\left(x^3+x^2\right)-\left(x^2+x\right)-\left(x+1\right)\)
=\(\left(x+1\right)\left(x^2-x-1\right)\)
c) x3+3x2-4
=\(\left(x^3-x^2\right)+\left(4x^2+4x\right)-\left(4x+4\right)\)
=\(\left(x-1\right)\cdot\left(x^2+4x-4\right)\)
d) x3+3x2y-9xy2+5y3
=\(\left(x^3-x^2y\right)+\left(4x^2y-4xy^2\right)-\left(5xy^2-5y^3\right)\)
=\(\left(x-y\right)\left(x^2+4xy-5y^2\right)\)
=\(\left(x-y\right)^2\left(x-5y\right)\)
a)
\(x^3+x+2\)
\(=\left(x^3+x^2\right)-\left(x^2+x\right)+\left(2x+2\right)\)
\(=x^2\left(x+1\right)-x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
b)
\(x^3-2x-1\)
\(=\left(x^3+x^2\right)-\left(x^2+x\right)-\left(x+1\right)\)
\(=x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-1\right)\)
c)
\(x^3-3x^2-4\)
\(=\left(x^3-x^2\right)+\left(4x^2-4x\right)+\left(4x-4\right)\)
\(=x^2\left(x-1\right)+4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+2.2.x+2^2\right)\)
\(=\left(x-1\right)\left(x+2\right)^2\)
d)
\(x^3-3x^2y-9xy^2+5y^3\)
\(=\left(x^3-x^2y\right)+\left(4x^2y-4xy^2\right)-\left(5xy^2-5y^3\right)\)
\(=x^2\left(x-y\right)+4xy\left(x-y\right)-5y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-4xy-5y^2\right)\)
\(=\left(x-y\right)^2\left(x-5y\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(-x^2+x+6=-\left(x^2-x-6\right)=-\left(x-3\right)\left(x+2\right)\)
Câu b không phân tích được nhé bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\left(x^4-4\right)+5x\left(x^2+2\right)\)
\(=\left(x^2+2\right)\left(x^2+5x-2\right)\)
b: \(x^8+x+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)
c: \(x^5+x^4+1\)
\(=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=-\left(x^2-x-6\right)=-\left(x-3\right)\left(x+2\right)\)
b: Đa thức này không phân tích được nhé bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=-\left(x^2-x-6\right)=-\left(x-3\right)\left(x+2\right)\)
b: Đa thức này không phân tích được nhé bạn
Lời giải:
$A=2\cos ^3a+\cos ^2a-\sin ^2a+\sin a=2\cos ^3a+2\cos ^2a-1+\sin a$
$=2\cos ^2a(\cos a+1)-(1-\sin a)$
$=2(1-\sin ^2a)(\cos a+1)-(1-\sin a)$
$=2(1-\sin a)(1+\sin a)(\cos a+1)-(1-\sin a)$
$=(1-\sin a)[2(\sin a+1)(\cos a+1)-1]$
$=(1-\sin a)(2\sin a\cos a+2\sin a+2\cos a+1)$
$=(1-\sin a)(\sin 2a+2\sin a+2\cos a+1)$