\(a\left(b^2+c^2\right)+b\left(a^2+c^2\right)+c\left(a^2+b^2\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2016

a)a(b2+c2)+b(a2+c2)+c(a2+b2)+2abc

=ab2+ac2+ba2+bc2+ca2+cb2+2abc

=(ab2+ba2)+(ac2+bc2)+(ca2+abc)+(cb2+abc)

=ab(a+b)+c2(a+b)+ca(a+b)+cb(a+b)

=(a+b)(ab+c2+ca+cb)

=(a+b)(a+c)(b+c)

b)a3-b3-c3-3abc

=(a-b)3-c3+3ab(a-b)-3abc

=(a-b-c)[(a-b)2+(a-b)c+c2]+3ab(a-b-c)

=(a-b-c)(a2-2ab+b2+ac-bc+c2+3ab)

=(a-b-c)(a2+b2+c2+ab-bc+ca)                            

17 tháng 8 2016

c)x12+x6+1

Lần lượt thêm và bớt x9; x3;x6 ta đc:

=x12+x9-x6-x9-x6-x3+x6+x3+1

=x6(x6+x3+1)-x3(x6+x3+1)+(x6+x3+1)

=(x6-x3+1)(x6+x3+1)

17 tháng 8 2016

b)x4-7x3-14x2-7x+1

=x4-3x3+x2-4x3+12x2-4x+x2-3x+1

=x2(x2-3x+1)-4x(x2-3x+1)+(x2-3x+1)

=(x2-4x+1)(x2-3x+1)

 

8 tháng 8 2018

a)  \(A=a^3-b^3-c^3-3abc\)

\(=\left(a-b\right)^3+3ab\left(a-b\right)-c^3-3abc\)

\(=\left(a-b-c\right)\left[\left(a-b\right)^2+c\left(a-b\right)+c^2\right]+3ab\left(a-b-c\right)\)

\(=\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2+3ab\right)\)

\(=\left(a-b-c\right)\left(a^2+b^2+c^2+ab+ac-bc\right)\)

8 tháng 8 2018

b)  \(B=a^2b^2\left(a-b\right)-c^2b^2\left(c-b\right)+a^2c^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)+a^2c^2\left(c-a\right)\)

\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)-a^2c^2\left[\left(a-b\right)+\left(b-c\right)\right]\)

\(=a^2b^2\left(a-b\right)+c^2b^2\left(b-c\right)-a^2c^2\left(a-b\right)-a^2c^2\left(b-c\right)\)

\(=a^2\left(a-b\right)\left(b^2-c^2\right)+c^2\left(b-c\right)\left(b^2-a^2\right)\)

\(=a^2\left(a-b\right)\left(b-c\right)\left(b+c\right)+c^2\left(b-c\right)\left(b-a\right)\left(b+a\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a^2b+a^2c-bc^2-ac^2\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(ab+bc+ca\right)\)

a) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)

\(=a^3b-a^3c+b^3\left(c-a\right)+c^3a-c^3b\)

\(=\left(a^3b-c^3b\right)+\left(c^3a-a^3c\right)+b^3\left(c-a\right)\)

\(=-b\left(c^3-a^3\right)+ca\left(c^2-a^2\right)+b^3\left(c-a\right)\)

\(=-b\left(c-a\right)\left(c^2-ac+a^2\right)+ca\left(c+a\right)\left(c-a\right)+b^3\left(c-a\right)\)

\(=\left(c-a\right)\left(-c^2b+abc-a^2b\right)+\left(c-a\right)\left(c^2a+ca^2\right)+b^3\left(c-a\right)\)

\(=\left(c-a\right)\left(-c^2b+abc-a^2b+c^2a+ca^2+b^3\right)\)

31 tháng 5 2018

a) a3 (b-c) + b3 (c-a) +c3 (a-b)

<=> a3b – a3c +b3c – b3a + c3a – c3b

<=>  b(a3 – c3) +c(a3 – b3) + a(b- c3)

(Tự áp dụng hằng đẳng thức)

b)

19 tháng 9 2018

Đặt:  \(a-b=x;\)\(b-c=y;\)\(c-a=z\)

thì:  \(x+y+z=0\)

Dễ dàng chứng minh đc:

\(x+y+z=0\)

thì   \(x^3+y^3+z^3=3xyz\)

đến đây bạn thay trở lại nhé