K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2015

bạn giữ nguyên ab(a+b),mấy cái kia triển khai ra,xong rồi nhóm hạng tử thu gọn lại,dc nhân tử chung là (a+b),xong rồi đưa (a+b) lm nhân tử chung,bên trong thu gọn từ từ

 

25 tháng 8 2016

\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\\ =a^2b+ab^2-b^2c-bc^2-ac^2+a^2c\)

\(=a^2\left(b+c\right)+a\left(b^2-c^2\right)-bc\left(b+c\right)\\ =a^2\left(b+c\right)+a\left(b-c\right)\left(b+c\right)-bc\left(b+c\right)\)

\(=\left(b+c\right)\left(a^2+ab-ac-bc\right)\\ =\left(b+c\right)\left[a\left(a+b\right)-c\left(a+b\right)\right]\)

\(=\left(b+c\right)\left(a-c\right)\left(a+b\right)\)

25 tháng 8 2016

\(ab\left(a+b\right)-bc\left(b+c\right)-ac\left(c-a\right)\)

\(=a^2b+ab^2-b^2c-bc^2-ac^2+a^2c\)

\(=a^2\left(b+c\right)+b^2\left(a-c\right)-c^2\left(b+c\right)\)

\(=\left(b+c\right)\left(a^2-c^2\right)+b^2\left(a-c\right)\)

\(=\left(b+c\right)\left(a-c\right)\left(a+c\right)+b^2\left(a-c\right)\)

\(=\left(a-c\right)\left(\left(b+c\right)\left(a+c\right)+b^2\right)\)

Còn lại bạn tự giải nha

14 tháng 10 2018

a)ab(a+b)-bc(b+c)+ac(a-c)

=ab(a+b)-bc(b+c)+ac\([\left(a+b\right)-\left(b+c\right)]\)

=ab(a+b)-bc(b+c)+ac(a+b)-ac(b+c)

=(a+b)(ab+ac)-(b+c)(bc+ac)

=(a+b)a(b+c)-(b+c)c(b+a)

=(a+b)(b+c)(a-c)

14 tháng 10 2018

\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=a^2b+abc+ca^2+ab^2+b^2c+abc+abc+bc^2+ac^2-abc\)

\(=a^2b+a^2c+ab^2+b^2c+c^2a+bc^2+ac^2+2abc\)

\(=\left(a^2b+ba^2+abc\right)+\left(b^2c+c^2b+abc\right)+\left(ac^2+ca^2\right)\)

\(=ab\left(a+b+c\right)+bc\left(a+b+c\right)+ac\left(a+c\right)\)

\(=\left(a+b+c\right)\left(ab+bc\right)+ac\left(a+c\right)\)

\(=b.\left(a+b+c\right)\left(a+c\right)+ac\left(a+c\right)\)

\(=\left(a+c\right)\left(ab+b^2+bc+ac\right)\)

\(=\left(a+c\right)\left[b.\left(a+b\right)+c.\left(a+b\right)\right]\)

\(=\left(a+c\right)\left(a+b\right)\left(b+c\right)\)

3 tháng 6 2015

= ab. [(a - c) + (b + c)] - bc(b +c) + ac(a - c)

= ab.(a - c) + ab.(b+c) - bc(b+c) + ac(a - c)

= [ab(a - c) + ac.(a - c)] + [ab(b +c) - bc(b+c)]

= (a - c)(ab + ac) + (b+c)(ab - bc) = a.(a- c).(b +c) + b.(b+c).(a - c)

= (a - c).(b+c). (a + b)

22 tháng 6 2016

ab(a-b) + bc((b-a)+(a-c)) +ac(c-a) 
=ab(a-b) -bc(a-b) -bc(c-a) +ac(c-a) 
=(a-b)(ab-bc) +(c-a)(ac-bc) 
=(a-b) b (a-c) + (c-a) c (a-b) 
=(a-b)(a-c)(b-c) 

15 tháng 9 2019

\(ab\left(a-b\right)-ac\left(a+c\right)+bc\left(2a-b+c\right)\)

\(=a^2b-ab^2-a^2c-ac^2+2abc-b^2c+bc^2\)

\(=a^2b-ab^2-a^2c-ac^2+abc+abc-b^2c+bc^2\)

\(=\left(bc^2-ac^2+abc-a^2c\right)-\left(b^2c-abc-ab^2+a^2b\right)\)

\(=c\left(bc-ac+ab-a^2\right)-b\left(bc-ac-ab+a^2\right)\)

\(=\left(c-b\right)\left(bc-ac+ab-a^2\right)\)

\(=\left(c-b\right)\left[c\left(b-a\right)+a\left(b-a\right)\right]\)

\(=\left(c-b\right)\left(c+a\right)\left(b-a\right)\)