K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

b) x2 - 2x - 4y2 - 4y

= x2 - 2x + 1 - 4y2 - 4y - 1

= ( x - 1 )2 - [ ( 2y )2 + 2.2.y + 1 ]

= ( x - 1 )2 - ( 2y + 1 )2

= ( x - 1 + 2y + 1 ).( x - 1 - 2y - 1 )

= ( x + 2y ).( x - 2y - 2 )

Bài làm

a) xz - yz - x2 + 2xy - y2 

= ( xz - yz ) - ( x2 - 2xy + y)

= z( x - y ) - ( x - y )2 

= ( x - y )( z - x + y )

b) x2 - 2x - 4y2 - 4y

= x2 - 2x - 4y2 - 4y + 1 - 1

= ( x2 - 2x + 1 ) - ( 4y2 + 4y + 1 )

= ( x - 1 )2 - ( 2y + 1 )2 

= ( x - 1 - 2y - 1 )( x - 1 + 2y + 1 )

= ( x - 2y - 2 )( x + 2y )

# Học tốt #

12 tháng 8 2015

a) x^4 - x^3 - x + 1 

= x^3 ( x - 1 ) - ( x- 1 )

= ( x^3 - 1 )(x - 1)

= ( x- 1 )^2 (x^2 + x +  1 )

 

12 tháng 8 2015

a)x4-x3-x+1

=x3(x-1)-(x-1)

=(x-1)(x3-1)

=(x-1)(x-1)(x2+x+1)

=(x-1)2(x2+x+1)

b)5x2-4x+20xy-8y

(sai đề)

 

12 tháng 8 2015

c) 2x^3y - 2xy^3 - 4xy^2 - 2xy

= 2xy ( x^2 -  y^2 - 2y - 1 )

= 2xy ( x^2 - ( y^2 + 2y + 1 ) 

= 2xy ( x^2 - ( y + 1 )^2 )

= 2x ( x - y - 1 )( x + y + 1 ) 

1 tháng 10 2018

sai bạn ơi !

đáp án là 

= 2xy (x + y + 1) (x - y + 1)

that pun cho ban Nguyen Dieu Thao :((

21 tháng 6 2017

A = x2(x - 1) + 6(1 - x)

A = x3 - x2 + 6 - 6x

A = (x3 - 6x) - (x2 - 6)

A = x.(x2 - 6) - (x2 - 6)

A = (x - 1)(x2 - 6)

21 tháng 6 2017

C = x2 + 2xy + y2 - yz - xz

C = (x + y)2 - z.(x + y)

C = (x + y - z).(x + y)

16 tháng 7 2017

a) \(x^2+2x-4y^2-4y=\left(x^2-4y^2\right)+\left(2x-4y\right)=\left(x+2y\right)\left(x-2y\right)+2\left(x-2y\right)\)

\(=\left(x-2y\right).\left(x+2y+2\right)\)

b)  \(x^4-6x^3+54x-81=\left(x^4-81\right)-\left(6x^3-54x\right)=\left(x^2-9\right)\left(x^2+9\right)-6x.\left(x^2-9\right)\)

\(=\left(x^2-9\right).\left(x^2+9-6x\right)=\left(x+3\right).\left(x-3\right).\left(x-3\right)^2=\left(x+3\right).\left(x-3\right)^3\)

c)  \(ax^2+ax-bx^2-bx-a+b=\left(ax^2-bx^2\right)+\left(ax-bx\right)-\left(a-b\right)\)

\(=x^2.\left(a-b\right)+x.\left(a-b\right)-\left(a-b\right)=\left(a-b\right).\left(x^2+x-1\right)\)

d)  \(\left(x^2+y^2-2\right)^2-\left(2xy-2\right)^2=\left(x^2+y^2-2+2xy-2\right).\left(x^2+y^2-2-2xy+2\right)\)

\(=\left(x^2+2xy+y^2-4\right).\left(x^2+y^2-2xy\right)=\left[\left(x+y\right)^2-4\right].\left(x-y\right)^2\)

\(=\left(x+y+2\right).\left(x+y-2\right).\left(x-y\right)^2\)

10 tháng 7 2018

a) xy – 3x + 2y – 6

= (xy - 3x) + (2y - 6)

= x(y - 3) + 2(y - 3)

= (y - 3)(x + 2)

b) x2y + 4xy + 4y – y3

= y(x2 + 4x + 4 - y2)

= y[(x2 + 4x + 4) - y2]

= y[(x + 2)2 - y2]

= y(x + 2 + y)(x + 2 - y)

c) x2 + y2 + xz + yz + 2xy

= (x2 + 2xy + y2) + (xz + yz)

= (x + y)2 + z(x + y)

= (x + y)(x + y + z)

d) x3 + 3x2 – 3x – 1

= (x3 - 1) + (3x2 - 3x)

= (x - 1)(x2 + x + z) + 3x(x - 1)

= (x - 1)(x2 + 4x + 1)

10 tháng 7 2018

a ) 

\(xy-3x+2y-6\)

\(=\left(xy+2y\right)-3x-6\)

\(=y\left(x+2\right)-3\left(x+2\right)\)

\(=\left(y-3\right)\left(x+2\right)\)

b ) 

\(x^2y+4xy+4y-y^3\)

\(=y\left(x^2+4x+4-y^2\right)\)

\(=y\left[\left(x+2\right)^2-y^2\right]\)

\(=y\left(x+2-y\right)\left(x+2+y\right)\)

c ) 

\(x^2+y^2+xz+yz+2xy\)

\(=\left(x+y\right)^2+z\left(x+y\right)\)

\(=\left(x+y\right)\left(x+y+z\right)\)

8 tháng 10 2020

a. x4 - 27x = x ( x3 - 33 ) = = x ( x - 3 ) ( x2 + 3x + 32 ) = x ( x - 3 ) ( x2 + 3x + 9 )

b. x3 + 2x2 + 2x + 1 = ( x3 + 13 ) + ( 2x2 + 2x ) = ( x + 1 ) ( x2 - x + 1 ) + 2x ( x + 1 ) = ( x + 1 ) ( x2 + x + 1 )

c. 4x - 4y + x2 - 2xy + y2 = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( x - y + 4 )

8 tháng 10 2020

\(x^4-27x\)   

\(=x\left(x^3-27\right)\)   

\(=x\left(x^3-3^3\right)\)   

\(=x\left(x-3\right)\left(x^2+3x+9\right)\)   

\(x^3+2x^2+2x+1\)   

\(=x^3+x^2+x^2+x+x+1\)   

\(=x^2\left(x+1\right)+x\left(x+1\right)+1\left(x+1\right)\)   

\(=\left(x+1\right)\left(x^2+x+1\right)\)   

\(4x-4y+x^2-2xy+y^2\)   

\(=4\left(x-y\right)+\left(x-y\right)^2\)   

\(=\left(x-y\right)\left(x-y+4\right)\)

8 tháng 6 2017

a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)

b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)

f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)

8 tháng 6 2017

a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)

\(=x^2+2xy+y^2-x^2+y^2\)

\(=2y^2+2xy\)

\(=2y\left(x+y\right)\)

c) \(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-x^2\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)

\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)

\(=\left(4x^2-1\right)\left(y^2-1\right)\)

21 tháng 6 2016

hoi con cao nguyen hoai thanh ay