\(x^2+4y^2+4xy+6x+12y+5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2020

x2 + 4y2 + 4xy + 6x + 12y + 5

= (x2 + 4xy + 4y2) + 6(x + 2y) + 5

= (x + 2y)2 + 6(x + 2y) + 5

= (x + 2y)2 + (x + 2y) + 5(x + 2y) + 5

= (x + 2y)(x + 2y + 1) + 5(x + 2y + 1)

= (x + 2y + 5)(x + 2y + 1)

5 tháng 6 2020

phân tích thành đa thức:x 2 + 4y 2 + 4xy + 6x + 12y + 5

x 2 + 4y 2 + 4xy + 6x + 12y + 5

= (x 2 + 4xy + 4y 2 ) + 6(x + 2y) + 5

= (x + 2y)2 + 6(x + 2y) + 5

= (x + 2y)2 + (x + 2y) + 5(x + 2y) + 5

= (x + 2y)(x + 2y + 1) + 5(x + 2y + 1)

= (x + 2y + 5)(x + 2y + 1)

Hok tốt

21 tháng 7 2019

a,x^2+4-16x^2

-15x^2+4

-(15x^2-4)

b,(1-2y+y^2)-(x^2-4xz+4z^2)

(1-y)^2-(x-z)^2

(1-y+x-z)(1-y-x+z)

c,(4x^2-4xy+y^2)-(25z^2-10z+1)

(2x+y)^2-(5z-1)^2

(2x+y+5z-1)(2x+y-5z+1)

6 tháng 7 2016

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)

Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)

\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)

25 tháng 3 2018

\(M+\left(6x^2-4xy\right)=7x^2-8xy+y^2\\ \Rightarrow M=7x^2-8xy+y^2-\left(6x^2-4xy\right)\\ =7x^2-8xy+y^2-6x^2+4xy\\ =\left(7x^2-6x^2\right)+\left(-8xy+4xy\right)+y^2\\ =x^2-4xy+y^2\)

1 tháng 8 2019

a) \(x^3+4xy+4xy^2\)

\(=x\left(x^2+4y+4y^2\right)\)

1 tháng 8 2019

b) \(x^2+4xy+4xy^2\)

\(=x\left(x+4y+4y^2\right)\)

24 tháng 7 2020

a. \(x^5+x+1\)

\(=\left(x^5-x^2\right)+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\)\(+x^2+x+1\)

\(=\left[x^2\left(x-1\right)+1\right]\left(x^2+x+1\right)\)

\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)

b.\(x^3+x^2+4\)

=\(x^3+2x^2-x^2-2x+2x+4\)

\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-x+2\right)\)
c.\(x^4+2x^2-24\)

\(=x^4+2x^3-2x^3-4x^2+6x^2+12x-12x-24\)

\(=x^3\left(x+2\right)-2x^2\left(x+2\right)+6x\left(x+2\right)-12\left(x+2\right)\)

\(=\left(x^3-2x^2+6x-12\right)\left(x+2\right)\)

\(=\left[x^2\left(x-2\right)+6\left(x-2\right)\right]\left(x+2\right)\)

\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)

24 tháng 7 2020

a, x^5 + x + 1 = x ^ 5 - x^2 + (x ^2 + x + 1) = x^2 ( x-1) ( x^2+x+1) + ( x^2+x+1) = ( x^2+x+1 ) ( x^3-x^2+1)

c, x^4 + 2x^2 -24 = (x^4 +6x^2) - ( 4x^2+24) = x^2( x^2+6) - 4(x^2+6) = (x^2-4)(x^2 +6 ) = (x-2)(x+2)(x^2+6)

19 tháng 8 2020

g) G =  x2 + 6x + 4y2 - 10y + 5

G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25

G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25

19 tháng 8 2020

h) H = -2x2 - 6x - 3y2 + 12y - 8

H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5 

H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)

vậy MaxH = 8,5 khi  x = -1,5 và y = 2

2 tháng 4 2019

Ta có: \(M=x^2+y^2-2xy^2-6x^2-3xy^2\)

    \(\Rightarrow M=-5x^2+y^2-5xy^2\)