\(a^3+4a^2-29a+24\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

\(=a^3-3a^2+7a^2-21a-\left(8a-24\right)\)hay 

\(=a^2\left(a-3\right)+8a\left(a-3\right)-8\left(a-3\right)\)

\(=\left(a-3\right)\left(a^2+8a-8\right)\)

CHÚC BẠN HỌC TỐT...

21 tháng 6 2017

\(a^3+4a^2-29a+24\)

\(=\left(a^3-3a^2\right)+\left(7a^2-21a\right)+\left(-8a+24\right)\)

\(=\left(a-3\right)\left(a^2+7a-8\right)\)

\(=\left(a-3\right)\left[\left(a^2-a\right)+\left(8a-8\right)\right]\)

\(=\left(a-3\right)\left(a-1\right)\left(a+8\right)\)

19 tháng 9 2017

a) \(a^3+4a^2-29a+24=\left(a^3-a^2\right)+\left(5a^2-5a\right)+\left(-24a+24\right)\)

\(=\left(a-1\right)\left(a^2+5a-24\right)=\left(a-1\right)\left(a^2+8a-3a-24\right)=\left(a-1\right)\left(a+8\right)\left(a-3\right)\)

b) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

Ta có \(\left(a+b+c\right)^3=a^3+b^3+c^3+3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)

\(\Rightarrow\left(a+b+c\right)^3-a^3-b^3-c^3=3a^2b+3ab^2+3ac^2+3bc^2+3a^2c+3b^2c+6abc\)

\(=3\left(a^2b+ab^2\right)+3\left(bc^2+ac^2\right)+3\left(a^2c+abc\right)+3\left(bc^2+abc\right)\)

\(=3\left(a+b\right)\left(ab+bc+ac+bc\right)=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

c) Theo trên ta có 

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)^3-3\left(a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+3abc\right)\)

\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab+2bc+2ca-3ab-3bc-3ca\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

d) \(x^5+x-1=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)

2 tháng 9 2021

\(\frac{1}{3}\sqrt{9+6a+a^2}+\frac{4a}{3}+5\)

\(=\frac{1}{3}\sqrt{\left(a+3\right)^2}+\frac{4a}{3}+5\)

\(=\frac{1}{3}\left|a+3\right|+\frac{4a}{3}+5\)(1)

Với a < 3 \(\left(1\right)=-\frac{1}{3}\left(a+3\right)+\frac{4}{3}a+5=a+4\)

Với a >= 3 \(\left(1\right)=\frac{1}{3}\left(a+3\right)+\frac{4}{3}a+5=\frac{5}{3}a+6\)

9 tháng 5 2016

1/ab(a+b)+bc(b+c)+ca(c+a)+2abc

= a^2b + ab^2 + b^2c + bc^2 + ca(c+a) + 2abc

= ab^2 + b^2c + a^2b + bc^2 + 2abc + ca(c+a)

=b^2(a+c) + b(a^2 + c^2 + 2ac) + ca(c+a)

=b^2(a+c) + b(a+c)^2 + ca(c+a)

=(c+a)[b^2 + b(a+c) + ca]

=(c+a)[b^2 + ab + bc + ca]

=(c+a)[b(b+a) + c(b+a)]

=(c+a)(b+c)(b+a)

2/VP=-(x-4)

pt trở thành \(\sqrt[3]{16-x^3}=-\left(x-4\right)\)

<=>x=2

23 tháng 6 2016

a) \(5+\sqrt{5}=\left(\sqrt{5}\right)^2+\sqrt{5}=\sqrt{5}\left(\sqrt{5}+1\right)\)

b) \(x-\sqrt{xy}=\left(\sqrt{x}\right)^2-\sqrt{x.y}=\left(\sqrt{x}\right)^2-\sqrt{x}.\sqrt{y}=\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\)

c) \(x-y-\sqrt{x}-\sqrt{y}=\left(\sqrt{x}\right)^2-\left(\sqrt{y}\right)^2-\sqrt{x}-\sqrt{y}\)

                                            \(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

                                            \(=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}-1\right)\)

d) \(1+\sqrt{x^3}=1+\left(\sqrt{x}\right)^3=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)\)

(Mình chắc chắn là mình làm đúng, mong bạn ủng hộ và click cho mình nha!)

23 tháng 9 2019

\(\sqrt{34+24\sqrt{2}}\)

\(=\sqrt{18+2.12\sqrt{2}+16}\)

\(=\sqrt{\left(3\sqrt{2}+4\right)^2}\)

\(=3\sqrt{2}+4\)