Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(15a^3+16a^2-29a+2\)
\(=\left(15a^3-15a^2\right)+\left(31a^2-31a\right)-\left(2a-2\right)\)
\(=\left(a-1\right)15a^2+31a\left(a-1\right)-2\left(a-1\right)\)
\(=\left(a-1\right)\left(15a^2+31a-2\right)\)
Ta có:
\(3b^2-4a^4=11ab\)
\(\Leftrightarrow3b^2-11ab-4a^4=0\)
\(\Leftrightarrow\left(3b^2-12ab\right)+\left(ab-4a^4\right)=0\)
\(\Leftrightarrow3b\left(b-4a\right)+a\left(b-4a^3\right)=0\)
1/ 2a + 2b = 2( a + b )
2/ 3a - 6b - 9c = 3( a - 2b - 3c )
3/ 5ax - 15ay + 20a = 5a( x - 3y + 4 )
4/ 3a2x - 6a2y + 12a = 3a( ax - 2ay + 4 )
5/ 4a( x - 5 ) - 2( 5 - x ) = 4a( x - 5 ) + 2( x - 5 ) = ( x - 5 )( 4a + 2 ) = ( x - 5 )2( 2a + 1 )
6. -3a( x - 3 ) + ( 3 - x ) = 3a( 3 - x ) + 1( 3 - x ) = ( 3a + 1 )( 3 - x )
7/ xm+1 - xm = xm( x + 1 )
8/ xm+2 - x2 = x2( xm - 1 )
E = x^3 - 3x^2 + 7x^2 - 21x - 8x + 24
= x^2 ( x- 3 ) + 7x ( x- 3 ) - 8 ( x- 3 )
= ( x- 3 )(x^2 + 7x - 8 )
= ( x- 3 )[ x^2 + 8x - x - 8 )
= ( x -3 ) [ x(x + 8 ) - ( x + 8 ) ]
= ( x- 3 )( x - 1 )( x + 8)
=a3-3a2+7a2-21a-8a+24
=a2(a-3)+7a(a-3)-8(a-3)
=(a-3)(a2+7a-8)
=(a-3)(a2-a+8a-8)
=(a-3)(a+8)(a-1)
mik chỉ biết (x+2)(x+3)(x+4)(x+5)-24=(x+6)(x+1)(x2+7x+16 bằng cách đặt ẩn phụ thui còn lại ko biết sorry nha
\(a^4+a^3+a^{3b}+a^{2b}\)
\(=a\left(a^3+a^2+1^{3b}+1^{2b}\right)\)
\(a^3+3a^2+4a+12\)
\(=a^2\left(a+3\right)+4\left(a+3\right)\)
\(=\left(a^2+4\right)\left(a+3\right)\)
\(a^4+a^3+a^3b+a^2b\)
\(=a^2\left(a^2+a+b+b\right)\)
\(=a^2\left(a^2+a+2b\right)\)
\(a^3+4a^2+4a+3\)
a, \(a^4+a^3+a^3b+a^2b=a^3\left(a+1\right)+a^2b\left(a+1\right)=\left(a+1\right)\left(a^2b+a^3\right)=a^2\left(a+1\right)\left(b+a\right)\)
Có sai dấu ko bạn
Đề : \(a^4+8a^3+14a^2-8a-15\)
\(=a^4-a^2+8a^3-8a+15a^2-15\)
\(=a^2\left(a^2-1\right)+8a\left(a^2-1\right)+15\left(a^2-1\right)\)
\(=\left(a^2-1\right)\left(a^2+8a+15\right)\)
\(=\left(a+1\right)\left(a-1\right)\left(a+3\right)\left(a+5\right)\)
\(a^3+4a^2-29a+24\)
\(=a^3-a^2+5a^2-5-24a+24\)
\(=a^2\left(a-1\right)+5a\left(a-1\right)-24\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2+5a-24\right)\)
\(=\left(a-1\right)\left(a^2-3a+8a-24\right)\)
\(=\left(a-1\right)\left(a\left(a-3\right)+8\left(a-3\right)\right)\)
\(=\left(a-1\right)\left(a-3\right)\left(a-8\right)\)
ban co hoi thieu mot ti