K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm: 

Giả sử \(b>c\)

Với mọi \(x\)ta có \(\left(x+a\right)\left(x-4\right)-7=\left(x+b\right)\left(x+c\right)\left(1\right)\)

Với \(x=4\)ta được \(\left(x+b\right)\left(x+c\right)=\left(4+a\right)\cdot0-7=-7\)

Vì \(b,c\in Z\)và \(b>c\)và chúng đề có vai trò như nhau nên ta có hai trường hợp sau:

Trường hợp 1:  \(\hept{\begin{cases}b+4=1\\c+4=-7\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\c=-11\end{cases}}}\). Thay vào \(\left(1\right)\)ta được

\(\left(x+a\right)\left(x-4\right)-7=\left(x-3\right)\left(x-11\right)\)

\(\Leftrightarrow x^2+\left(a-4\right)\cdot x-\left(4a+7\right)=x^2-14x+33\)

\(\Leftrightarrow\left(a-4\right)\cdot x-\left(4a+7\right)=-14x+33\).

\(\Leftrightarrow a-4=-14\)và \(4a+7=-33\Leftrightarrow a=-10\)

Trường hợp 2: \(\hept{\begin{cases}b+4=7\\c+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}b=3\\c=-5\end{cases}}}\).Giải tương tự như trên ta được \(a=2\)

Vậy \(\orbr{\begin{cases}a=-10;b=-3;c=-11\\a=-10;b=-11;c=3\end{cases}}\)hoặc \(\orbr{\begin{cases}a=2;b=3;c=-5\\a=2;b=-5;c=3\end{cases}}\)

Bạn nhé khi mk giải thì mk chỉ có 2 trường hợp và ra kết quả a,b,c chỉ có hai nhưng khi mình kết luận mình đã kl đến 4 đáp số bởi vì như bạn đã đọc mk đã giả sử b>c nên cả trong hai trường hợp mk chỉ xét b>c thôi vd: ở trường hợp 1 mk chỉ xét b+4=1; c+4=-7 thì suy ra b=-3;c=-11 chứ mình không có xét th b+4=-7;c+4=1 nhé !

                                                                     ~~~~~~~~ GOOD LUCK ~~~~~~~~~~~~~~`

13 tháng 7 2015

cho tớ mỗi dấu cộng là 1 ví dụ nhé .tớ chưa hiểu lém 

18 tháng 1 2016

khai triển hết ra,rút gọn và nhóm

18 tháng 1 2016

đúng đó ma tốc độ ,ai cùng ý kiến vs mk thì tick nha

16 tháng 7 2019

\(x^5+y^5-\left(x+y\right)^5\)

\(=x^5+y^5-\left(x^5+5x^4y+10x^3y^2+10x^2y^3+8xy^4+y^5\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)

\(=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

24 tháng 11 2015

5x+3 là số chẵn, 5y+4 là số lẻ. Phân tích 516 = 2x2x3x43

do đó, 5y+4 = 129, vậy y=3

5x+3 = 4, nên x=0

16 tháng 7 2019

h)Ta có : \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt\(x^2+7x+11=y\)

\(=>p\left(x\right)=\left(y-1\right)\left(y+1\right)-24=y^2-1-24=y^2-25=\left(y-5\right)\left(y+5\right)\)

Thay \(y=x^2+7x+11\) vào ta có : \(p\left(x\right)=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

16 tháng 7 2019

\(f)m\left(x\right)=x^6+27=\left(x^2+3\right)\left(x^4-3x^2+9\right)\)

e)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=\left(x^2+x\right)^2-2\left(x^2+x\right)+6\left(x^2+x\right)-12=\left(x^2+x\right)\left(x^2+x-2\right)+6\left(x^2+x-12\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)=\left(x^2+x+6\right)\left(x^2-x+2x-2\right)=\left(x^2+x+6\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

Bài 1:Tínha) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)Bài 2:Phân tích đa thức thành nhân tửa) \(x^2-3x-15\)b) \(x^2-9x+4\)c) \(x^2-12x+32\)d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)e) \(x^4-2x^3-3x^2-4x-1\)f) \(x^3+x^2-x+2\)Bài 3: Cho x,y là các số thực...
Đọc tiếp

Bài 1:Tính

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)

b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)

c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)

d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)

Bài 2:Phân tích đa thức thành nhân tử

a) \(x^2-3x-15\)

b) \(x^2-9x+4\)

c) \(x^2-12x+32\)

d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

e) \(x^4-2x^3-3x^2-4x-1\)

f) \(x^3+x^2-x+2\)

Bài 3: Cho x,y là các số thực sao cho \(x+y\);\(x^2+y^2\);\(x^4+y^4\)là các số nguyên.CMR: \(2x^2y^2\)và \(x^3+y^3\)là các số nguyên

Bài 4: Rút gọn phân thức:

a) \(\frac{x^3+y^3+z^3\cdot3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

b) \(\frac{x^4-2x^2+1}{x^3-3x-2}\)

Bài 5:Cho \(abc=1\)

Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

Đề thi bắt đầu đến 11 h kế thúc có 1 giải 1 và 2 giải 2 thui nha cố lên nào giải 3 vô hạn nhưng trên 5 điểm

 

11
14 tháng 9 2019

a. \(=x^3+2^3+1^3-x^3\)

\(=\left(x^3-x^3\right)+8+1\)

\(=0+8+1\)

\(=9\)

14 tháng 9 2019

Bài 1 :

a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )

= ( x3 - 8 ) + ( 1 - x3 )

= x3 - 8 + 1 - x3

= 7

b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x

= 28x2 - 14x - x2 - x + 3x + 3 + 16x

= 27x2  + 3