Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+\sqrt{x}+2\sqrt{x}+2\)
= \(\sqrt{x}\left(\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
= \(\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)\)
\(2x-2\sqrt{x}+3\sqrt{x}-3\)
= \(2\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)\)
= \(\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
\(x^2\left(x+1\right)+xy\left(y+1\right)+2y^2\left(1-y\right)=0\)
a/ \(=x-1+2\sqrt{x-1}+1=\left(\sqrt{x-1}+1\right)^2\)
b/ \(=x-1-2\sqrt{x-1}+1=\left(\sqrt{x-1}-1\right)^2\)
c/ \(=x-4-4\sqrt{x-4}+4=\left(\sqrt{x-4}-2\right)^2\)
d/ \(=\left(\sqrt{x}+2\right)^2\)
2) ta có \(x^3+4x^2-29x+24=x^3+8x^2-4x^2-32x+3x+24\)
\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)=\left(x+8\right)\left(x^2-4x+3\right)\)
\(=\left(x+8\right)\left(x^2-x-3x+3\right)=\left(x-8\right)\left[x\left(x-1\right)-3\left(x-1\right)\right]=\left(x+8\right)\left(x-1\right)\left(x-3\right)\)
\(y-2x\sqrt{y}-3x\sqrt{y}+6x^2=\sqrt{y}\left(\sqrt{y}-2x\right)-3x\left(\sqrt{y}-2x\right)=\left(\sqrt{y}-3x\right)\left(\sqrt{y}-2x\right)\)
ân may tinh ca si ô