Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\left(x^2+x\right)^2+4x^2+4x-12=x^4+2x^3+x^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=\left(x^4-x^3\right)+\left(3x^3-3x^2\right)+\left(8x^2-8x\right)+\left(12x-12\right)\)
\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)
\(=\left(x^3+3x^2+8x+12\right)\left(x-1\right)\)
\(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\left(x-1\right)\)
\(=\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
c, \(x^3+3x^2-4=\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(2x+4\right)\)
\(=x^2\left(x+2\right)+x\left(x+2\right)-2\left(x+2\right)\)
= \(\left(x^2+x-2\right)\left(x+2\right)\)
a)\(x^5+x^4+1=x^5-\left(-x^3+x^3\right)+x^4+\left(x^2-x^2\right)+\left(x-x\right)+1\)
\(=x^5-x^3+x^2+x^4-x^2+x+x^3-x+1\)
\(=x^2\left(x^3-x+1\right)+x\left(x^3-x+1\right)+\left(x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x+1\right)\)
b,c có ng lm rồi
d)\(2x^4-3x^3-7x^2+6x+8\)
Ta thấy x=-1 là nghiệm của đa thức
=>đa thức có 1 hạng tử là x+1
\(\Rightarrow\left(x+1\right)\left(2x^3-5x^2-2x+8\right)\)
\(\Rightarrow\left(x+1\right)\left[2x^3-x^2-4x-4x^2+2x+8\right]\)
\(\Rightarrow\left(x+1\right)\left[x\left(2x^2-x-4\right)-2\left(2x^2-x-4\right)\right]\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)\left(2x^2-x-4\right)\)
phần còn lại bạn tự lo nhé
a, (x-2)(3x-2)
b, (x+5)(x+6)
c, (x+1)(x+4)
d (x-5y)(x-2y)
e, (x-6)(x-3)
f, (x-2)(x-1)
g (x-2)(3x+1)
h (2x-3)(x+2)
i
a/ \(3x+3y-4x-4y=3\left(x+y\right)-4\left(x+y\right)=\left(x+y\right)\left(3-4\right)=-1\left(x+y\right)\)
b/ \(7x\left(x-y\right)-\left(y-x\right)=7x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(7x+1\right)\)
c/ \(5x\left(1-x\right)+\left(x-1\right)=5x\left(1-x\right)-\left(1-x\right)=\left(1-x\right)\left(5x-1\right)\)
d/ \(4x\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left(4x+3x-3y\right)=\left(x-y\right)\left(7x-3y\right)\)
e/ \(4x\left(x-y\right)+3\left(y-x\right)^2=4x\left(x-y\right)+3\left(x-y\right)^2=\left(x-y\right)\left(4x+3x-3y\right)=\left(x-y\right)\left(7x-3y\right)\)
g/ \(x^2+8x+7=x^2+x+7x+7=x\left(x+1\right)+7\left(x+1\right)=\left(x+1\right)\left(x+7\right)\)
h/ \(x^2-6x-16=x^2+2x-8x-16=x\left(x+2\right)-8\left(x+2\right)=\left(x+2\right)\left(x-8\right)\)
i/ \(4x^2-8x+3=4x^2-2x-6x+3=2x\left(2x-1\right)-3\left(2x-1\right)=\left(2x-1\right)\left(2x-3\right)\)
k/ \(3x^2-11x+6=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(x-3\right)\left(3x-2\right)\)
a) \(\dfrac{2x+3}{x-5}=\dfrac{2\left(x-5\right)+13}{x-5}=2+\dfrac{13}{x-5}\)
Để \(2+\dfrac{13}{x-5}\in Z\)
thì \(\dfrac{13}{x-5}\in Z\Rightarrow13⋮x-5\)
\(\Rightarrow x-5\inƯ\left(13\right)\)
\(\Rightarrow x-5\in\left\{\pm1;\pm13\right\}\)
Xét các trường hợp...
b) \(\dfrac{x^3-x^2+2}{x-1}=\dfrac{x^2\left(x-1\right)+2}{x-1}=x^2+\dfrac{2}{x-1}\)
Tương tự câu a)
c) \(\dfrac{x^3-2x^2+4}{x-2}=\dfrac{x^2\left(x-2\right)+4}{x-2}=x^2+\dfrac{4}{x-2}\)
...
d) \(\dfrac{2x^3+x^2+2x+2}{2x+1}=\dfrac{x^2\left(2x+1\right)+2x+2}{2x+1}=x^2+\dfrac{2x+2}{2x+1}\)
Khi đó lí luận cho \(2x+2⋮2x+1\)
\(\Rightarrow\left(2x+1\right)+1⋮2x+1\)
\(\Rightarrow1⋮2x+1\)
\(\Rightarrow2x+1\inƯ\left(1\right)\)
...
e) \(\dfrac{3x^3-7x^2+11x-1}{3x-1}=\dfrac{x^2\left(3x-1\right)-2x\left(3x-1\right)+3\left(3x-1\right)+2}{3x-1}\)
\(=\dfrac{\left(x^2-2x+3\right)\left(3x-1\right)+2}{3x-1}=\left(x^2-2x+3\right)+\dfrac{2}{3x-1}\)
...
f) \(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}=\dfrac{\left(x^2\right)^2-4^2}{\left(x-2\right)^2\left(x^2+4\right)}\)
\(=\dfrac{\left(x^2-4\right)\left(x^2+4\right)}{\left(x-2\right)^2\left(x^2+4\right)}=\dfrac{x^2-4}{\left(x-2\right)^2}=\dfrac{x+2}{x-2}=\dfrac{\left(x-2\right)+4}{x-2}=1+\dfrac{4}{x-2}\)
....
Câu 1:
\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)
ĐKXĐ bạn tự tìm nha : )
k, Ta có : \(\frac{1-4x^2}{x^2+4x}:\frac{2-4x}{3x}=\frac{\left(1-2x\right)\left(1+2x\right)}{x\left(x+4\right)}.\frac{3x}{2\left(1-2x\right)}\)
\(=\frac{3x\left(1-2x\right)\left(1+2x\right)}{2x\left(x+4\right)\left(1-2x\right)}=\frac{3\left(1+2x\right)}{2\left(x+4\right)}\)
j, Ta có : \(\frac{x+y}{y-x}:\frac{x^2+xy}{3x^2-3y^2}=\frac{x+y}{y-x}:\frac{x\left(x+y\right)}{3\left(x^2-y^2\right)}=\frac{x+y}{y-x}.\frac{3\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\)
\(=\frac{3\left(x-y\right)\left(x+y\right)}{x\left(y-x\right)}=\frac{3\left(x-y\right)\left(x+y\right)}{-x\left(x-y\right)}=\frac{-3\left(x+y\right)}{x}\)
i, Ta có : \(\frac{a^2+ab}{b-a}:\frac{a+b}{2a^2-2b^2}=\frac{a\left(a+b\right)}{-\left(a-b\right)}:\frac{a+b}{2\left(a^2-b^2\right)}=\frac{a\left(a+b\right)}{-\left(a-b\right)}.\frac{2\left(a-b\right)\left(a+b\right)}{a+b}\)
\(=\frac{2a\left(a+b\right)\left(a-b\right)}{-\left(a-b\right)}=-2a\left(a+b\right)\)
h, = k,
f, Ta có : \(\frac{x^2-36}{2x+10}.\frac{3}{6-x}=\frac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}.\frac{-3}{x-6}=\frac{-3\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)\left(x-6\right)}=\frac{-3\left(x+6\right)}{2\left(x+5\right)}\)
a: \(A=-\left(x^2-4x-3\right)\)
\(=-\left(x^2-4x+4-7\right)\)
\(=-\left(x-2\right)^2+7< =7\)
Dấu '=' xảy ra khi x=2
b: \(B=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=1/2
c: \(C=-2\left(x^2-x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-x+\dfrac{1}{4}+\dfrac{9}{4}\right)\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}< =-\dfrac{9}{2}\)
Dấu '=' xảy ra khi x=1/2
e: \(E=-\left(x^2+6x+9+1\right)=-\left(x+3\right)^2-1< =-1\)
Dấu = xảy ra khi x=-3
\(A=x^2-10x+30=x^2-10x+25+5=\left(x-5\right)^2+5\ge5\)
Vậy GTNN của A là 5 khi x = 5
\(B=4x^2+4x+9=4x^2+4x+1+8=\left(2x+1\right)^2+8\ge8\)
Vậy GTNN của B là 8 khi x = \(-\dfrac{1}{2}\)
\(C=9x^2-12x+20=9x^2-12+4+16=\left(3x-2\right)^2+16\ge16\)
Vậy GTNN của C là 16 khi x = \(\dfrac{2}{3}\)
\(D=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN của D là \(\dfrac{3}{4}\) khi x = \(-\dfrac{1}{2}\)
\(E=2x^2+3x+5=2\left(x^2+\dfrac{3}{2}x+\dfrac{9}{16}\right)+\dfrac{31}{8}=2\left(x+\dfrac{3}{4}\right)^2+\dfrac{31}{8}\ge\dfrac{31}{8}\)
Vậy GTNN của E là \(\dfrac{31}{8}\) khi x = \(-\dfrac{3}{4}\)
\(F=3x^2-7x+6=3\left(x^2-\dfrac{7}{3}x+\dfrac{49}{36}\right)+\dfrac{23}{12}=\left(x-\dfrac{7}{6}\right)^2\ge\dfrac{23}{12}\)Vậy GTNN của F là \(\dfrac{23}{12}\) khi x = \(\dfrac{7}{6}\)
tự làm nhà vú bự