Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...
= x2 - bx - ax + ab = x(x-b) - a(x-b) = (x-b)(x-a).
Chúc bạn học tốt
Phân tích đa thức thành nhân tử :
\(x^2-\left(a-b\right)x+ab\)
\(=x^2-\left(ax+bx\right)+ab\)
\(=x^2-ax-bx+ab\)
\(=\left(x^2-ax\right)-\left(bx+ab\right)\)
\(=\left[x\left(x-a\right)\right]-\left[b\left(x-a\right)\right]\)
\(=\left(x-a\right)\left(x-b\right)\)
Ta có : a3 + b3 = (a + b)(a - ab + b)
Thay ab = 4 và a + b = 5
=> a3 + b3 = 5(5 - 4)
=> a3 + b3 = 5
Vậy a3 + b3 = 5
Sửa đề:
\(x^2+4x+3\\=x^2+x+3x+3\\=x(x+1)+3(x+1)\\=(x+1)(x+3)\)