
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(2x^2+2x+5x+5=2x\left(x+1\right)+5\left(x+1\right)=\left(2x+5\right)\left(x+1\right)\)
b,\(2x^2-2x+5x-5=2x\left(x-1\right)+5\left(x-1\right)=\left(2x+5\right)\left(x-1\right)\)
c,\(x^3-3x^2+1-3x=\left(x^3+1\right)-3x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1\right)-3x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-4x+1\right)\)
d,\(x^2-4x-5=x^2+x-5x-5=x\left(x+1\right)-5\left(x+1\right)=\left(x-5\right)\left(x+1\right)\)
e,\(\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)^2-\left(2a\right)^2=\left(a^2-2a+1\right)\left(a^2+2a+1\right)=\left(a-1\right)^2\left(a+1\right)^2\)

a) 2x3 + 8x2 - 8x
= 2x(x2 + 4x - 4)
= 2x(x2 + 4x + 4 - 8)
= 2x[(x + 2)2 - 8]
= \(2x\left(x+2-\sqrt{8}\right)\left(x+2+\sqrt{8}\right)\)
b) a2 - b2 + 4a + 4b
= (a - b)(a + b) + 4(a + b)
= (a + b)(a - b + 4)
c) x2 - 2x - 3
= x2 + x - 3x - 3
= x(x + 1) - 3(x + 1)
= (x + 1)(x - 3)
d) x2 - 4x - 3
= x2 - 4x + 4 - 7
= (x + 2)2 - 7
= \(\left(x+2-\sqrt{7}\right)\left(x+2+\sqrt{7}\right)\)

Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15

a/ \(a^3+4a^2+4a+3\)
\(=a^3+3a^2+a^2+3a+a+3\)
\(=\left(a^3+3a^2\right)+\left(a^2+3a\right)+\left(a+3\right)\)
\(=a^2\left(a+3\right)+a\left(a+3\right)+\left(a+3\right)\)
\(=\left(a+3\right)\left(a^2+a+1\right)\)
b/ \(x^4-4x^3+8x+3\)
\(=x^4+x^3-5x^3-5x^2+5x^2+5x+3x+3\)
\(=\left(x^4+x^3\right)-\left(5x^3+5x^2\right)+\left(5x^2+5x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)-5x^2\left(x+1\right)+5x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x-5x^2+5x+3\right)\)
c/ \(x^4+4x^2-5\)
\(=x^4-x^3+x^3-x^2+5x^2-5x+5x-5\)
\(=\left(x^4-x^3\right)+\left(x^3-x^2\right)+\left(5x^2-5x\right)+\left(5x-5\right)\)
\(=x^3\left(x-1\right)+x^2\left(x-1\right)+5x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+x^2+5x+5\right)\)
\(=\left(x-1\right)\left[x\left(x+1\right)+5\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(x+5\right)\)

Bài 2.
a) x(x-2)-x+2=0
<=> x2-2x-x+2=0
<=> x2-3x+2=0
<=> x2-x-2x-2=0
<=> x(x-1)-2(x-1)=0
<=> (x-1)(x-2)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
b) x2(x2+1)-x2-1=0
<=> x4+x2-x2-1=0
<=> x4-1=0
<=> x4=1
<=> x=\(\pm\)1

Bài 1: 4a2-4ab+b2-9a2b2
=(2a)2-2.2a.b+b2-(3ab)2
=(2a-b)2-(3ab)2
=(2a-b-3ab)(2a-b+3ab)
a/ (4a2-4ab+b2)-9a2b2
= (2a-b)2-(3ab)2
= (2a-b-3ab) (2a-b+3ab)

b,\(4x^3-4x^2-9x+9\)
\(=\left(4x^3-4x^2\right)+\left(-9x+9\right)\)
\(=4x^2\left(x-1\right)-9\left(x-1\right)\)
\(=\left(4x^2-9\right)\left(x-1\right)\)
c,\(xy-x^2+x-y\)
\(=\left(xy-y\right)+\left(-x^2+x\right)\)
\(=y\left(x-1\right)-x\left(x-1\right)\)
\(=\left(y-x\right)\left(x-1\right)\)
Câu a đề kì kì sao á.
\(4a^2-4a+1-b^2\)
=\(\left(4a^2-4a+1\right)-b^2\)
=\(\left(2a-1\right)^2-b^2\)
=\(\left(2a-1-b\right)\left(2a-1+b\right)\)
\(4x^3-4x^2-9x+9\)
=\(\left(4x^3-4x^2\right)-\left(9x-9\right)\)
=\(4x^2\left(x-1\right)-9\left(x-1\right)\)
=\(\left(x-1\right)\left(4x^2-9\right)\)
=\(\left(x-1\right)\left(2x-3\right)\left(2x+3\right)\)
\(xy-x^2+x-y\)
=\(x\left(y-x\right)+\left(x-y\right)\)
=\(x\left(y-x\right)-\left(y-x\right)\)
=\(\left(y-x\right)\left(x-1\right)\)
Nhớ cho mình 1 đúng nha
a, x2+4x+3=x2+3x+x+3=x(x+3)+(x+3)=(x+1)(x+3)
b,(a2+1)2-4a2=(a2-2a+1)(a2+2a+1)=(a+1)2(a-1)2=(a2-1)2
c, x2-4x-5=x2-5x+x-5=x(x-5)+(x-5)=(x+1)(x-5)
a )
\(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x+1\right)\)
b )
\(\left(a^2+1\right)^2-4a^2\)
\(=\left(a^2+1\right)^2-\left(2a\right)^2\)
\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)
c )
\(x^2-4x-5\)
\(=x^2-5x+x-5\)
\(=\left(x-5\right)x+\left(x-5\right)\)
\(=\left(x-5\right)\left(x+1\right)\)