Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
\(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
\(\Leftrightarrow xy\left(x+y\right)+xyz+yz\left(y+z\right)+xyz+xz\left(z+x\right)\)
\(\Leftrightarrow xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)
\(\Leftrightarrow\left(x+z\right)\left(y\left(z+x\right)+zx\right)\)
\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)\)
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=xy.x+xy.y+yz.y+yz.z+xz.x+xz.z+2xyz\)
\(=x^2y+xy^2+y^2z+yz^2+x^2z+xz^2+2xyz\)
a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)
Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b
=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b
Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2
= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2
=(x^2+y^2+z^2 +xy+yz+zx)^2
\(2xyz+x^2y+xy^2+x^2z+xz^2+y^2z+yz^2\)
\(=x^2\left(y+z\right)+yz\left(y+z\right)+x\left(y^2+z^3\right)+2xyz\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y^2+z^2+2yz\right)\)
\(=\left(y+z\right)\left(x^2+yz\right)+x\left(y+z\right)^2\)
\(=\left(y+z\right)\left(x^2+yz\right)+xy+xz\)
\(=\left(y+z\right)\left[x\left(x+2\right)+y\left(x+2\right)\right]\)
\(=\left(y+z\right)\left(x+y\right)\left(x+2\right)\)
\(b,x^2\left(y-z\right)+y^2\left(z-y\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2z-y^2x+z^2x-z^2y\)
\(=x^2\left(y-z\right)+yz\left(y-z\right)-x\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left[x^2+yz-x\left(y+z\right)\right]\)
\(=\left(y-z\right)\left[x\left(x-y\right)-z\left(x-y\right)\right]\)
\(=\left(y-z\right)\left[\left(x-z\right)\left(x-y\right)\right]\)
\(xyz-\left(xy+yz+xz\right)+\left(x+y+z\right)-1\)
\(=\left(xyz-xy-xz+x\right)-yz+y+z-1\)
\(=x\left(yz-y-z+1\right)-\left(yz-y-z+1\right)\)
\(=\left(x-1\right)\left(yz-y-z+1\right)\)
\(=\left(x-1\right)\left[y\left(z-1\right)-\left(z-1\right)\right]\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
\(xy\left(x-y\right)-xz\left(x+z\right)+yz\left(2x-y+z\right)\)
\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left[\left(x-y\right)+\left(x+z\right)\right]\)
\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left(x-y\right)+yz\left(x+z\right)\)
\(=\left(x-y\right)\left(xy+yz\right)+\left(x+z\right)\left(yz-xz\right)\)
\(=y\left(x-y\right)\left(x+z\right)-z\left(x+z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x+z\right)\left(y-z\right)\)