Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2-2x=a\) thì \(x^2-2x-1=a-1\)
Ta có: \(\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)
\(=a\left(a-1\right)-6\)
\(=a^2-a-6\)
\(=a^2-3a+2a-6\)
\(=a\left(a-3\right)+2\left(a-3\right)\)
\(=\left(a+2\right)\left(a-3\right)\)
\(=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)
Cho mình hỏi: Bạn đã biết làm những bài bạn gửi chưa?
2 bài mình mới đăng là mh chỉ để lưu lại, lúc khác làm thôi, dù sao cx cảm ơn bạn
\(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+2x^2+2x\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1+2x\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
Em sửa lại tên đi nhé!
\(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2\)
= \(\left(x^2-1\right)^2-2.\left(x^2-1\right).\frac{x}{2}+\frac{x^2}{4}-\frac{x^2}{4}-2x^2\)
= \(\left(x^2-1-\frac{x}{2}\right)^2-\frac{9}{4}x^2\)
\(=\left(x^2-1-\frac{x}{2}-\frac{3}{2}x\right)\left(x^2-1-\frac{x}{2}+\frac{3}{2}x\right)\)
= \(\left(x^2-2x-1\right)\left(x^2-x-1\right)\)
Phân tích tiếp được đấy:
\(x^2-2x-1=\left(x-1\right)^2-2=\left(x-1-\sqrt{2}\right)\left(x-1+\sqrt{2}\right)\)
\(x^2-x-1=\left(x-\frac{1}{2}\right)^2-\frac{5}{4}=\left(x-\frac{1}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{1}{2}+\frac{\sqrt{5}}{2}\right)\)
Thay vào nhé!
(x2+2x)2-2(x2+2x)-3
=(x2+2x)(x2+2x-2)-3
Đặt t=x2+2x ta có:
t(t-2)-3=t2-2t-3
=(t-3)(t+1)=(x2+2x-3)(x2+2x+1)
=(x-1)(x+3)(x+1)2
(x^2+2x)^2-2(x^2+2x)-3
=(x^2+2x)(x^2+2x-2)-3
=(x^2+2x)(x^2+2x-5)
\(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+2x^2+1\right)+x^3+x\)
\(=\left(x^2+1\right)^2+x\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2+1+x\right)\)
đặt x^2+2x=t
<=>A= t(t+2)+1=t^2+2t+1=(t+1)^2
Trả lại tên cho em A=(x^2+x+1)^2