\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1.\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

Ta có:

\(x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\)

\(=\left(x^9-x^8\right)+\left(x^8-x^7\right)-\left(x^6-x^5\right)-\left(2x^5-2x^4\right)-\left(x^4-x^3\right)+\left(x^2-x\right)+\left(x-1\right) \)

\(=x^8.\left(x-1\right)+x^7.\left(x-1\right)-x^5.\left(x-1\right)-2x^4.\left(x-1\right)-x^3\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^8+x^7-x^5-2x^4-x^3+x+1\right)\)

4 tháng 10 2018

xin chào làm ơn đừng trách mk mk sẽ nói cách giải

7 tháng 7 2016

a)  \(\left(x+y\right)^5-x-y=\left(x+y\right)^5-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^4-1\right]\)

\(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)     #áp dụng hàng đẳng thức#

c) \(x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\)nhóm vào là đc

b) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)

=\(\left(y^2+x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]+\left(y^2+z^2\right)^3\)

\(\left(y^2+z^2\right)\left[x^4+y^4+2x^2y^2-x^2z^2+x^4-y^2z^2+x^2y^2+z^4+x^4-2x^2z^2+y^4+z^4+2y^2z^2\right]\)

=\(=\left(y^2+z^2\right)\left(2x^4+2y^4+2z^4+3x^2y^2-3x^2z^2+y^2z^2\right)\)

7 tháng 7 2016

câu a ko phải -x-y mà là -x^5-y^5 bạn à

23 tháng 1 2019

Biết câu nào làm câu đấy thoy nha :))

3. \(x^4y^4+4\)

\(=\left(x^2y^2\right)^2+2\cdot x^2y^2\cdot2+2^2-2\cdot x^2y^2\cdot2\)

\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2y^2-2xy+2\right)\left(x^2y^2+2xy+2\right)\)

4. \(x^4+4y^4\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot2y^2+\left(2y^2\right)^2-2\cdot x^2\cdot2y^2\)

\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

23 tháng 1 2019

2. \(x^4+x^2+1\)

\(=\left(x^2\right)^2+2\cdot x^2\cdot1+1^2-2x^2\)

\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)

\(=\left(x^2-\sqrt{2}x+1\right)\left(x^2+\sqrt{2}x+1\right)\)

5 tháng 11 2018

a) \(x^{12}-3x^6+1\)

\(=\left(x^6\right)^2-2\cdot x^6\cdot1+1^2-x^6\)

\(=\left(x^6-1\right)^2-\left(x^3\right)^2\)

\(=\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)\)

5 tháng 11 2018

b) \(x^4+6x^3+7x^2-6x+1\)

\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)

\(=\left(x^2\right)^2+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)

\(=\left(x^2+3x-1\right)^2\)

28 tháng 12 2019

\(x^7+x^2+1\)

\(=x^7+x^6+x^5+x^4+x^3+x^2+x+1\)

\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

28 tháng 12 2019

a) \(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

b) \(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)

\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)

\(=\left(x^2+x+1\right)\left[x^5-\left(x-1\right)\left(x^3+1\right)\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)