Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+z^3-3xyz=\left(x^3+y^3\right)-3xyz+z^3\)
\(=\left(x+y\right)^3-3xy.\left(x+y\right)-3xyz+z^3\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy.\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right).\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy.\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left(x^2+y^2+z^2-zx-zy+2zy-3xy\right)\)
\(=\left(x+y+z\right).\left(x^2+z^2+y^2-zx-zy-xy\right)\)
Vừa làm xong . Chúc bạn học tốt !
\(=\left(x+y\right)^3+z^z-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
= (x+y)3 - 3x2y-3xy2+z2-3xyz
=(x+y+z)[(x+y)2-(x+y)z+z2]-3x(x+y+z)
=(x+y+z)(x2+y2+z2-xy-yz-zx)
x3+y3+z2-3xyz=( x3+y3+3x2y +3xy2)-3x2y+3xy2+ z3-3xyz
= [ (x+y)3+z3 ] - [3xy(x+y) + 3xyz]
=(x+y+z)[(x+y)2 -(x+y)z+z2 ] - 3xy(x+y+z)
= (x+y+z)(x2+y2+z2+2xy-xz-yz-3xy)
=(x+y+z)(x2+y2+z2-xy-xz-yz)
x3 + y3 + z3 - 3xyz
= (x + y)3 - 3xy(x + y) + z3 - 3xyz
= (x + y)3 + z3 - 3xy(x + y + z)
= (x + y + z)3- 3(x + y + z)(x + y)z - 3xy(x + y + z)
= (x + y + z)3 - 3(x + y + z)(xy + yz + zx)
= (x + y + z)[(x + y + z)2 - 3xy - 3yz - 3xz)]
= (x + y + z)(x2 + y2 + z2 + 2xy + 2yz + 2xz - 3xy - 3yz - 3xz)
= (x + y + z)(x2 + y2 + z2 - xy - yz - xz)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(=\left(x^3+y^3\right)+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy+yz+zx\right)\)