Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+y^2-x^2y^2+xy-x-y\)
\(\Leftrightarrow x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)-x\left(1-y\right)\)
\(\Leftrightarrow\left(1-y\right)\left(x^2+x^2y-y-x\right)\)
\(\Leftrightarrow\left(1-y\right)\left(x+y\right)\left(x-1\right)\left(x+1\right)\)
a)\(x^2-y^2-x+3y-2=\left(x^2+xy-2x\right)-\left(xy+y^2-2y\right)+\left(x+y-2\right)\)
\(=x\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)\)
\(=\left(x+y-2\right)\left(x-y+1\right)\)
b)\(x^3+y^3+6xy+x+y-10\)
\(=\left(x^3+xy^2-x^2y+2x^2+2xy+5x\right)+\left(y^3+x^2y+xy^2+2y^2+2xy+5y\right)-\left(2x^2+2y^2-2xy+4x+4y+10\right)\)
\(=x\left(x^2+y^2-xy+2x+2y+5\right)+y\left(y^2+x^2-xy+2y+2x+5\right)-2\left(x^2+y^2-xy+2x+2y+5\right)\)\(=\left(x+y-2\right)\left(x^2+y^2-xy+2x+2y+5\right)\)
\(x^2-y^2+4-4x\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2+y\right)\left(x-2-y\right)\)
1)=x(x-1)-y(y-1)
2)=(x-2)2 -y2
3)=(2x+1)2 -9y2+1
#Mình k biết viết bình phương, thông cảm bạn nhé!
\(x^2-3x+xy-3y\)
\(=x\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
\(x^2-2xy+y^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
\(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)
x2 + 4x + y - 9y2
<=> x(x + 4) + y(1 + 9y)
<=> (x + y)(x + 4 + 1 + 9y)
<=> (x + y)(x + 9y + 5)
bí rồi
x2 + 1 - y2 - 2x
= x2 - 2x + 1 - y2
=[x2 - 2x + 1] - y2
=[x-1]2 - y2
=[x-1-y][x-1+y]
a) \(x^2+1-y^2-2x=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
b) \(64x^4+y^4=\left(8x^2\right)^2+\left(y^2\right)^2=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
a) \(\Leftrightarrow\left(2x\right)^2+2.2x.1+1-y^2\Leftrightarrow\left(2x+1\right)^2-y^2\Leftrightarrow\left(2x-1-y\right)\left(2x-1+y\right)\)
b)\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
T I C K cho mình nha cảm ơn
\(x^2-y^2+3x-3y\)
\(=\left(x^2-y^2\right)+\left(3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)+3.\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+3\right)\)
\(x^2-y^2+4x+4\)
\(=\left(x^2+2.2x+2^2\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2-y\right)\left(x+2+y\right)\)
Tham khảo nhé~
x4 + 2x3 + x2 - y2
= ( x4 + 2x3 + x2 ) - y2
= [ ( x2 )2 + 2.x2.x + x2 ] - y2
= ( x2 + x )2 - y2
= ( x2 + x - y )( x2 + x + y )
\(=x^2\left(x^2+2x+1\right)-y^2\)
\(=x^2\left(x+1\right)^2-y^2\)
\(=x^2\left(x+1-y\right)\left(x+1+y\right)\)
Ta có : \(F=x^2-4^x+4-y^2\)
\(=\left(x^2-4^x+4\right)-y^2\)( nhóm hạng tử )
\(=\left(x-2\right)^2-y^2\)( đẳng thức số 2 )
\(=\left(x-2-y\right)\left(x-2+y\right)\)( đẳng thức số 3 )
Vậy : \(F=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2+x-y^2+y=\left(x^2-y^2\right)+\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+1\right)\)