K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2018

\(x^2+x-6=\left(x^2-3x\right)+\left(2x-6\right)=x\left(x-3\right)+2\left(x-3\right)=\left(x-3\right)\left(x+2\right)\)

\(\left(x^2+x\right)^2+3\left(x^2+x\right)+2=\left(x^2+x\right)^2+2.\left(x^2+x\right).1,5+1,5^2-0,5^2\)

                                                       \(=\left(x^2+x+1,5\right)^2-0,5^2\)

                                                      \(=\left(x^2+x+1\right)\left(x^2+x+2\right)\)

Đặt \(x^2+x+1=t\)

\(\Rightarrow\left(x^2+x+1\right).\left(x^2+3x+1\right)+x^2\)

\(=t.\left(t+2x\right)+x^2\)

\(=t^2+2tx+x^2\)

\(=\left(t+x\right)^2\)

\(=\left(x^2+2x+1\right)^2\)

28 tháng 9 2016

c1:

x3+3x2+3x+1-27z3

=(x+1)3-(3z)3

=(x+1-3z)[(x+1)2-(x+1)3z+9z2)

=(x+1-3z)(x2+2x+1-3xz-3z+9x2)

c2:

x2-2xy+y2-xz+yz

=(x-y)2-z(x-y)

=(x-y)(x-y-z)

8 tháng 10 2019

ta có

\(5x=-3y=4z\)

\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)

Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)

28 tháng 6 2018

1)(x^2+3x+1)(x^2+3x+2)-6

Đặt t = x + 3x + 1

Khi đó PT có dạng:

t.(t + 1) - 6

= t2 + t - 6

= t2 - 2t - 3t - 6

= t.(t - 2) + 3.(t - 2)

= (t + 3).(t - 2)

= (x2 + 3x + 1 + 3).(x2 + 3x + 1 - 2)

= (x2 + 3x + 4).(x2 + 3x - 1)

28 tháng 6 2018

\(1\hept{\begin{cases}\left(x^2+3x+2-1\right)\left(x^2+2x+2\right)-6\\\left(t-1\right)\left(t\right)-6\\t^2-t-6\end{cases}}.\) " đặt x^2+3x+2 = t

\(\hept{\begin{cases}t^2-\frac{2t.1}{2}+\frac{1}{4}-\left(\frac{24+1}{4}\right)\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\\\left(t-\frac{1}{2}\right)^2-\frac{25}{4}\end{cases}}\)

\(\hept{\begin{cases}\left(t-\frac{1}{2}-\frac{5}{2}\right)\left(t-\frac{1}{2}+\frac{5}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\\\left(t-\frac{7}{2}\right)\left(t+\frac{4}{2}\right)\end{cases}}\)

2)  \(\hept{\begin{cases}\left\{\left(x+1\right)\left(x+7\right)\right\}\left\{\left(x+5\right)\left(x+3\right)\right\}+15\\\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\\t\left(t+8\right)+15\end{cases}}\)  

\(\hept{\begin{cases}t^2+8t+15\\\left(t^2+8t+16\right)-1\\\left(t+4\right)^2-1\end{cases}}\Leftrightarrow\left(t+5\right)\left(t+4\right)\)

\(\hept{\begin{cases}a^3\left(b-c\right)+b^3\left(c-a+b-b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(-c+a-b+b\right)+c^3\left(a-b\right)\\a^3\left(b-c\right)-b^3\left(a-b\right)-b^3\left(b-c\right)+c^3\left(a-b\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\left(b-c\right)\left(a^3-b^3\right)-\left(a-b\right)\left(b^3-c^3\right)\\\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+ab+c^2\right)\\\left(a-b\right)\left(b-c\right)\left(a^2+2ab+2b^2+c^2\right)\end{cases}}}\)

\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(\left(x^2+3x+1\right)=a\), ta được:

\(a\left(a+1\right)-6\)\(=a^2+a-6\)\(=\left(a^2+3a\right)-\left(2a+6\right)\)\(=a\left(a+3\right)-2\left(a+3\right)\)

\(=\left(a+3\right)\left(a-2\right)\)

Thay \(a=\left(x^2+3x+1\right)\), ta được:

\(=\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)

\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)

9 tháng 10 2017

bạn hãy dùng máy tính tìm nghiệm là đc bạn nhé ! như vậy sẽ nhanh hơn ! 

31 tháng 10 2020

Đặt \(x^2+3x+1=t\)

\(\Rightarrow\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6=t.\left(t+1\right)-6\)

\(=t^2+t-6=\left(t^2-2t\right)+\left(3t-6\right)\)

\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)

\(=\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\)

\(=\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)

31 tháng 10 2020

\(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)

Đặt \(x^2+3x+1=a\)ta có :

\(a\left(a+1\right)-6\)

\(=a^2+a-6\)

\(=a^2+6a-a-6\)

\(=\left(a^2+6a\right)-\left(a+6\right)\)

\(=a\left(a+6\right)-\left(a+6\right)\)

\(=\left(a+6\right)\left(a-1\right)\)

Thay \(a=x^2+3x+1\)vào A ta có :

\(A=\left(x^2+3x+1+6\right)\left(x^2+3x+1-1\right)\)

\(=\left(x^2+3x+7\right)\left(x^2+3x\right)\)