
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt \(x^2-3x-1=a\), ta có:
\(a^2-12a+27=a^2-9a-3a+27=a\left(a-9\right)-3\left(a-9\right)=\left(a-9\right)\left(a-3\right)\)
\(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)
Mà \(x^2-3x-10=x^2-5x+2x-10=x\left(x-5\right)+2\left(x-5\right)=\left(x-5\right)\left(x+1\right)\)
và \(x^2-3x-4=x^2+x-4x-4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)
\(\Rightarrow\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27=\left(x-5\right)\left(x-4\right)\left(x+1\right)\left(x+2\right)\)

Trả lời:
x4 - 3x3 + 3x2 - x
= x ( x3 - 3x2 + 3x - 1 )
= x ( x - 1 )3
Ta có :
\(x^4-3x^3+3x^2-x\)
\(=x\left(x^3-3x^2+3x-1\right)\)
\(=x\left(x-1\right)^3\)
Vậy ..........

\(x^2-3x^2+1-3x\)
\(=\left(x^2+1\right)-3\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(1-3\right)\)
\(=-2\left(x^2+1\right)\)
- 3 nha ko phải -3x đâu
x2 - 3x2 + 1 - 3x
= (x2 + 1) + (-3x2 - 3x)
= x(x + 1) - 3x(x + 1)
= (x + 1) (x - 3x)
k bít đúng k?? 546456676577688789687684684623654654767576768745253563464545645

= (x3-1)+3x(x-1) = (x-1)(x2+x+1)+3x(x-1)
=(x-1)(x2+x+1+3x)
=(x-1)(x2+4x+1)

\(A=\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)
Đặt \(t=x^2+3x+1\) thì A thành
\(t\left(t-4\right)-5=t^2-4t-5\)
\(t^2-5t+t-5=t\left(t-5\right)+\left(t-5\right)\)
\(=\left(t-5\right)\left(t+1\right)=\left(x^2+3x+1-5\right)\left(x^2+3x+1+1\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x+4\right)\)

Ta có:
\(C_1:\left(3x+1\right)^2-4\left(x-2\right)^2=\left(9x^2+6x+1\right)-4\left(x^2-4x+4\right)\)
\(=9x^2+6x+1-4x^2+16x-16=5x^2+22x-15=5x\left(x+5\right)-3\left(x+5\right)=\left(5x-3\right)\left(x+5\right)\)
\(C_2:\left[\left(3x+1\right)-2\left(x-2\right)\right]\left[\left(3x+1\right)+2\left(x-2\right)\right]=\left(x+5\right)\left(5x-3\right)\)

Ta có : \(M=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(t=x^2+5x+5\) \(\Rightarrow M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
Vậy \(M=\left(x^2+5x+5\right)^2\)

x4 + 3x2 +4
= x4 + 4x2 + 4 - x2
= ( x2 + 2 )2 - x2= ( x2 +
= ( x2 - x + 2) * ( x2 + x + 2)
Không biết có đúng không ...

\(=\left(x^2-x\right)-\left(2x-2\right)\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right).\left(x-2\right)\)
Có: \(x^2-3x+2\)\(=x^2-x-2x+2\)\(=x\left(x-1\right)-2\left(x-1\right)\)\(=\left(x-1\right)\left(x-2\right)\)