Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\sqrt{x}-1=\sqrt{x^2}.x-1=\sqrt{x}^3-1=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
Ta nhắc lại: Phương trình bậc hai phân tích được thành nhân tử khi và chỉ khi nó tồn tại nghiệm.
Ta thấy: `x^2-4x+12=(x-2)^2+8>=8>0AAx` nên ta không thể phân tích nhân tử cho phương trình này.
x² - 4x - 12
= x² + 2x - 6x - 12
= (x² + 2x) - (6x + 12)
= x(x + 2) - 6(x + 2)
= (x + 2)(x - 6)
Ta có: \(x^2+y^2+2xy+x+y-6\)
\(=\left(x+y\right)^2+x+y-6\)
\(=\left(x+y\right)^2+x+y-9+3\)
\(=\left[\left(x+y\right)^2-3^2\right]+\left(x+y+3\right)\)
\(=\left(x+y-3\right)\left(x+y+3\right)+\left(x+y+3\right)\)
\(=\left(x+y+3\right)\left(x+y-2\right)\)
Trả lời:
\(x-5\sqrt{x}+6=x-3\sqrt{x}-2\sqrt{x}+6\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)-2.\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}-2\right)\)
\(x-9+y-2\sqrt{xy}=\left(x-2\sqrt{xy}+y\right)-9\)
\(=\left(\sqrt{x}-\sqrt{y}\right)^2-9\)
\(=\left(\sqrt{x}-\sqrt{y}-3\right).\left(\sqrt{x}-\sqrt{y}+3\right)\)
\(x-2\sqrt{x}-3=x-3\sqrt{x}+\sqrt{x}-3\)
\(=\sqrt{x}.\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)\)
\(=\left(\sqrt{x}-3\right).\left(\sqrt{x}+1\right)\)
Học tốt
\(x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
\(x^4-2y^4-x^2y^2+x^2+y^2=\left(x^4-y^4\right)-\left(x^2y^2-x^2\right)+\left(y^2-y^4\right)=\left(x^2-y^2\right)\left(x^2+y^2\right)-x^2\left(y^2-1\right)-y^2\left(y^2-1\right)=\left(x^2+y^2\right)\left(x^2-y^2\right)-\left(y^2-1\right)\left(x^2+y^2\right)=\left(x^2+y^2\right)\left(x^2-y^2-y^2+1\right)=\left(x^2+y^2\right)\left(x^2-2y^2+1\right)\)
\(x-y+\sqrt{xy^2}-\sqrt{y^3}\)
\(=\left(x-y\right)+\left(y\sqrt{x}-y\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+y\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+y\right)\)