\(\text{a}b\left(\text{a}-b\right)+bc\left(b-c\right)+c\te...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

=(a-b)(b-c)(c-a)

29 tháng 9 2019

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+bc\left[\left(b-a\right)-\left(c-a\right)\right]+ca\left(c-a\right)\)

\(=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)\)

\(=\left(a-b\right)\left(ab-bc\right)-\left(c-a\right)\left(bc-ca\right)\)

\(=b\left(a-b\right)\left(a-c\right)-c\left(c-a\right)\left(b-a\right)\)

\(=b\left(a-b\right)\left(a-c\right)-c\left(a-c\right)\left(a-b\right)\)

\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)

29 tháng 9 2019

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+3a^2b+3ab^2+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2-a^3-b^3\)

\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)

\(=3\left(a^2b+ab^2+a^2c+ac^2+2abc+b^2c+bc^2\right)\)

\(=3\left(a^2b+ab^2+a^2c+ac^2+abc+abc+b^2c+bc^2\right)\)

\(=3\left[ab\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)\right]\)

\(=3\left(a+b\right)\left(ab+c^2+ac+bc\right)\)

\(=3\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

8 tháng 10 2017

mở hằng đẳng thức nhé cậu :)

13 tháng 10 2017

(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)

1 tháng 7 2019

Chúc bạn học tốt :33

1 tháng 7 2019

Thank you))))

1 tháng 7 2019

\(M=a\left(b^2-c^2\right)+b\left(c^2-a^2\right)+c\left(a^2-b^2\right)\)

\(M=ab^2-ac^2+bc^2-ba^2+c\left(a-b\right)\left(a+b\right)\)

\(M=-ab\left(a-b\right)-c^2\left(a-b\right)+c\left(a-b\right)\left(a+b\right)\)

\(M=\left(a-b\right)\left(-ab-c^2+ac+bc\right)\)

\(M=\left(a-b\right)\left[-a\left(b-c\right)+c\left(b-c\right)\right]\)

\(M=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

1 tháng 7 2019

Giờ là cách khác:(tại em làm khá kĩ nên nó dài thôi chứ em trình bày lại trong giấy nó ngắn ngủn à)

Đặt \(b^2-c^2=x;c^2-a^2=y\Rightarrow a^2-b^2=-\left(x+y\right)\)

Suy ra \(M=ax+by-c\left(x+y\right)\)

\(=x\left(a-c\right)+y\left(b-c\right)\)

\(=\left(b^2-c^2\right)\left(a-c\right)+\left(c^2-a^2\right)\left(b-c\right)\)

\(=\left(b-c\right)\left(a-c\right)\left(b+c\right)+\left(c-a\right)\left(b-c\right)\left(c+a\right)\)

\(=\left(b-c\right)\left(a-c\right)\left(b+c\right)-\left(a-c\right)\left(b-c\right)\left(c+a\right)\)

\(=\left(b-c\right)\left(a-c\right)\left(b+c-c-a\right)\)

\(=\left(b-c\right)\left(a-c\right)\left(b-a\right)\) [muốn cho đẹp thì nhân (-1) . (-1) vào thì nó thành (a-b)(b-c)(c-a) ]

1 tháng 7 2019

\(=\left(a+b\right)^2+2\left(a+b\right)c+c^2+\left(a+b\right)^2-2\left(a+b\right)c+c^2-4c^2\)

\(=2\left(a+b\right)^2-2c^2=2\left[\left(a+b\right)^2-c^2\right]=2\left(a+b+c\right)\left(a+b-c\right)\)

QT
Quoc Tran Anh Le
Giáo viên
1 tháng 7 2019

Mình đã làm bài này rồi.

Link: https://hoc24.vn/hoi-dap/question/824554.html

12 tháng 8 2019

undefined

QT
Quoc Tran Anh Le
Giáo viên
1 tháng 7 2019

\(\left(a+b+c\right)^2+\left(a+b-c\right)^2-4c^2\)

\(=\left[\left(a+b+c\right)^2-\left(2c\right)^2\right]+\left(a+b-c\right)^2\)

\(=\left(a+b+3c\right)\left(a+b-c\right)+\left(a+b-c\right)^2\)

\(=\left(a+b-c\right)\left(a+b+3c+a+b-c\right)\)

\(=\left(a+b-c\right)\left(2a+2b+2c\right)\)

\(=2\left(a+b-c\right)\left(a+b+c\right)\)

20 tháng 6 2019

a) \(a^2+b^2+c^2\ge ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b=c\)

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)

+) vế 1 bđt \(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

+) vế 2 bđt \(\Leftrightarrow3a^2+3b^2+3c^2\ge a^2+b^2+c^2+2ab+2bc+2ac\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ac\)( CMTT câu a )

Từ đây ta có đpcm

Dấu "=" \(\Leftrightarrow a=b=c\)

c) \(a^3+b^3\ge ab\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( luôn đúng )

Dấu "=" \(\Leftrightarrow a=b\)