\(\text{a}^3x-\text{a}b+b-x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

Ta có: 4a2b2 -(a2+b-c2)2 =[2ab-(a2+b2-c2)][2ab+a2+b2-c2]
=[c2-(a-b)2][(a+b)2-c2]
=(-a+b+c)(a-b+c)(a+b+c)(a+b-c)
Có sai sót nào mong bỏ qua :)

29 tháng 9 2019

ta có \(4a^2b^4-\left(a^2+b^2-c^2\right)^2\)

\(\left(2ab\right)^2-\left(a^2+b^2-c^2\right)^2\)

Theo hằng đẳng thức thứ 3 ta có:

\(\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

=\(\left[\left(a^2+2.a.b+b^2\right)-c^2\right]\left[-\left(a^2-2.a.b+b^2\right)+c^2\right]\)

=\(\left[\left(a+b\right)^2-c^2\right]\left[-\left(a-b\right)^2+c\right]\)

=\(\left(a+b+c\right)\left(a+b-c\right)\left(a+b+c\right)\left(a+b-c\right)\)

=\(2\left(a+b+c\right)2\left(a+b-c\right)\)

=\(\left(2a+2b+2c\right)\left(2a+2b-2c\right)\)

1 tháng 10 2019

\(\left(x^2+x+1\right)\left(x^2+3x+1\right)+x^2\)

\(=x^4+x^3+x^2+3x^3+3x^2+3x+x^2+x+1+x^2\)

\(=x^4+4x^3+6x^2+4x+1\)

\(=\left(x+1\right)^4\)

29 tháng 9 2019

=(a-b)(b-c)(c-a)

29 tháng 9 2019

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=ab\left(a-b\right)+bc\left[\left(b-a\right)-\left(c-a\right)\right]+ca\left(c-a\right)\)

\(=ab\left(a-b\right)-bc\left(a-b\right)-bc\left(c-a\right)+ca\left(c-a\right)\)

\(=\left(a-b\right)\left(ab-bc\right)-\left(c-a\right)\left(bc-ca\right)\)

\(=b\left(a-b\right)\left(a-c\right)-c\left(c-a\right)\left(b-a\right)\)

\(=b\left(a-b\right)\left(a-c\right)-c\left(a-c\right)\left(a-b\right)\)

\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\)

29 tháng 9 2019

\(\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3-a^3-b^3-c^3\)

\(=a^3+b^3+3a^2b+3ab^2+3c\left(a^2+2ab+b^2\right)+3ac^2+3bc^2-a^3-b^3\)

\(=3a^2b+3ab^2+3a^2c+6abc+3b^2c+3ac^2+3bc^2\)

\(=3\left(a^2b+ab^2+a^2c+ac^2+2abc+b^2c+bc^2\right)\)

\(=3\left(a^2b+ab^2+a^2c+ac^2+abc+abc+b^2c+bc^2\right)\)

\(=3\left[ab\left(a+b\right)+c^2\left(a+b\right)+ac\left(a+b\right)+bc\left(a+b\right)\right]\)

\(=3\left(a+b\right)\left(ab+c^2+ac+bc\right)\)

\(=3\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

18 tháng 10 2019

      (x + 2y - 3)2  - 4(x + 2y - 3) + 4

=   (x + 2y - 3)2  - 2. 2. (x + 2y - 3)  +  22   (hằng đẳng thức số 2, bình phương  của một hiệu)

=  ( x + 2y - 3 - 2)2

= ( x + 2y - 5)2

28 tháng 8 2020

Ta có: \(\left(a-b\right)\left(b-c\right)\left(a-c\right)+\left(a+b\right)\left(b+c\right)\left(a-c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left[\left(a-b\right)\left(b-c\right)+\left(a+b\right)\left(b+c\right)\right]+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(ab-ac-b^2+bc+ab+ac+b^2+bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a-c\right).\left(2ab+2bc\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=2b.\left(a-c\right).\left(a+c\right)+\left(a+b\right)\left(a+c\right)\left(c-b\right)\)

    \(=\left(a+c\right)\left[2b\left(a-c\right)+\left(a+b\right)\left(c-b\right)\right]\)

    \(=\left(a+c\right)\left(2ab-2bc+ac-ab+bc-b^2\right)\)

    \(=\left(a+c\right)\left(ab-bc+ac-b^2\right)\)

    \(=\left(a+c\right)\left[a.\left(b+c\right)-b.\left(b+c\right)\right]\)

    \(=\left(a+c\right)\left(a-b\right)\left(b+c\right)\)

26 tháng 8 2020

Bài làm:

Ta có: \(3x^2+3x-6\)

\(=\left(3x^2+6x\right)-\left(3x+6\right)\)

\(=3x\left(x+2\right)-3\left(x+2\right)\)

\(=3\left(x-1\right)\left(x+2\right)\)

26 tháng 8 2020

\(3x^2+3x-6\)

\(=3\left(x^2+x-2\right)\)

\(=3\left(x^2+2x-x-2\right)\)

\(=3\left[x\left(x+2\right)-\left(x+2\right)\right]\)

\(=3\left(x-1\right)\left(x+2\right)\)