\(x^3\left(y-z\right)+y^3\left(z-x\right)+z^3\left(x-y\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2017

a) \(\left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]\)

\(=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)\)

\(=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)\)

Cô nghĩ phân tích đa thức này sẽ đẹp hơn:

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\right)^2\right]\)

\(=\left(x-z\right)\left(3y^2-3xy+3zx-3xyz\right)\)

\(=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

b) \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

\(=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)

\(=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz\)

\(=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)\)

\(=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)\)

\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

6 tháng 7 2022

a) \left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3(xy)2+(yz)3+(zx)3

=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]=(xy)2+(yz+zx)[(yz)2(yz)(zx)+(zx)2]

=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)=(xy)2+(yx)(x2+y2+3z23yz+xy3xz)

=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)=(xy)(xyx2y23z2+3yzxy+3xz

\left(x-y\right)^3+\left(y-z\right)^3+\left

 

=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3


 

=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\l

 

=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\

 

=\left(x-z\right)\left(

=3\left(x-y\right)\lefb) \left(x+y+z\right)\left(xy+yz+zx\right)-xyzb)(x+y+z)(xy+yz+zx)xyz

=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz=(xy+yz+zx)(x+y+z)xyz

=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz=xy(x+y+z)+(yz+zx)(x+y+z)xyz

=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)=xy(x+y+zz)+(yz+zx)(x+y+z)

=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)=xy(x+y)+z(y+x)(x+y+z)

=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]=(x+y)[xy+z(x+y+z)]

=\left(x+y\right)\left(xy+zx+zy+z^2\right)=(x+y)(xy+zx+zy+z2)

=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]=(x+y)[x(y+z)+z(y+z)]

=\left(x+y\right)\left(y+z\right)\left(z+x\right)=(x+y)(y+z)(z+x)

 
1 tháng 11 2016

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 9 2016

mk học lớp 7 thui

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

\(=\left[\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\right]-\left(y^2+z^2\right)^3\)

\(=\left(x^2+y^2+z^2-x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4\right)-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left[x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-\left(y^2+z^2\right)^2\right]\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-y^4-2y^2z^2-z^4\right)\)

\(=\left(y^2+z^2\right)\left(3x^4+3x^2y^2-3x^2z^2-3y^2z^2\right)\)

   = 3(y2+z2)(x4+x2y2-x2z2-y2z2)

   = 3(y2+z2)[x2(x2+y2)-z2(x2+y2)]

   = 3(y2+z2)(x2-z2)(x2+y2)

   = 3(y2+z2)(x-z)(x+z)(x2+y2)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2=3xy\left(x+y\right)\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2-\left(x^3+y^3\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2+3\left(x+y\right).z+3z^2\right]-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2+3xz+3yz+3z^2-x^2+xy-y^2\right)\)

  = (x+y)[3xy+3xz+3yz+3z

  = 3(x+y)(xy+xz+yz+z2)

  = 3(x+y)[x(y+z)+z(y+z)]

  = 3(x+y)(x+z)(y+z)

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^3\right)-\left(y^2+z^2\right)^3\)

\(=x^6+3x^4y^2+3x^4y^2+y^6+z^2+-x^2+-y^6+-3y^4z+-3y^2z^4+-z^6\)

\(=x^6+3x^4y^2+3x^2y^4+-3y^4z^4+-z^6+-x^2+z^2\)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3+-x^3+-y^3\)

\(=\left(x^3+-x^3\right)+\left(3x^2y\right)+\left(3xy^2\right)+\left(y^3+-y^3\right)\)

\(=3x^2y+3xy^2\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3x^2z+3xy^2+6xyz+3xz^2+y^3+3y^2z+3yz^2+z^2-x^3-y^3-z^3\)

\(=3x^2y+3x^2z+3xy^2+3xy^2+6xyz+3xz^2+3y^2z+3yz^2\)

P/s: Ko chắc

31 tháng 10 2016

Làm như vầy là sai hướng rồi.

Tham khảo :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)\)

\(=\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]\)

\(=\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]\)

\(=3\left(y+z\right)\left[\left(x^2+xy\right)+\left(yz+xz\right)\right]\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

17 tháng 9 2018

\(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)

\(P=-x^3\left(y^2-z\right)-y^3\left(z^2-x\right)-z^3\left(x^2-y\right)+xyz\left(xyz-1\right)\)

Thay x2 - y = a ; y2 - z = b ; z2 - x = c

\(P=-x^3b-y^3c-z^3a+xyz\left(xyz-1\right)\)

\(P=-x^3b-y^3c-z^3a+x^2y^2z^2-xyz\left(1\right)\)

Ta có:

\(\left\{{}\begin{matrix}x^2-y=a\\y^2-z=b\\z^2-x=c\end{matrix}\right.\left(2\right)\)

\(\Rightarrow abc=\left(x^2-y\right)\left(y^2-z\right)\left(z^2-x\right)\)

\(\Rightarrow abc=x^2y^2z^2-ay^2z^2+abz^2-bz^2x^2+bcx^2-zx^2y^2+cay^2-xyz\)

\(\Rightarrow abc=x^2y^2z^2-az^2\left(y^2-b\right)-bx^2\left(z^2-c\right)-cy^2\left(x^2-a\right)-xyz\)

Thay (2) vào ta được:

\(abc=x^2y^2z^2-az^2.z-bx^2.x-cy^2.y-xyz\)

\(\Rightarrow abc=-az^3-bx^3-cy^3+x^2y^2z^2-xyz\)

\(P=-az^3-bx^3-cy^3+x^2y^2z^2-xyz\) ( Theo 1 )

\(\Rightarrow P=abc\)

Vậy P không phụ thuộc vào biến x

4 tháng 8 2019

Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)

Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)

\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)

\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)

\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)

\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Hay \(A=3\cdot2x\cdot2y\cdot2z\)

\(A=24xyz\)

6 tháng 11 2015

(x+y+z)2 - x2-y2-z2 = x2+y2+z2+2xy+2yz+2zx -x2-y2-z2= 2(xy+yz+zx)

6 tháng 11 2015

cứ lên mạng gõ cả bài ra,,hoặc vô phần nâng cao là có