\(x^3-x^2-8x+12\)

b)\(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

b) \(9x^3+6x^2+x\)

\(=x\left(9x^2+6x+1\right)\)

\(=x\left(3x+1\right)^2\)

c) \(x^4+5x^3+15x-9\)

\(=\left(x^4-9\right)+5x\left(x^2+3\right)\)

\(=\left(x^2-3\right)\left(x^2+3\right)+5x\left(x^2+3\right)\)

\(=\left(x^2+3\right)\left(x^2-3+5x\right)\)

24 tháng 11 2019

a) \(x^2-y^2+10y-25\)

\(=x^2-\left(y^2-10y+25\right)\)

\(=x^2-\left(y-5\right)^2\)

\(=\left(x-y+5\right)\left(x+y-5\right)\)

18 tháng 8 2017

x+ 7x - 6=x2 . x + 7x - 22 + 2 = (x2 - 22) + (x+7x)+2=(x-2) . (x+2) + 8x + 2

x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x

x3 - 9x2 + 6x + 16=x2 . x - 9x2 + 6x + 16 = (x- 9x2) . (x+6x) + 16=(x-9x) . (x+9x) . 7x + 16

k mk nha

NV
25 tháng 10 2019

\(A=x^3-4x^2+4x+3x^2-12x+12\)

\(=x\left(x-2\right)^2+3\left(x-2\right)^2\)

\(=\left(x+3\right)\left(x-2\right)^2\)

\(B=x^3-10x^2+25x+x^2-10x+25\)

\(=x\left(x-5\right)^2+\left(x-5\right)^2\)

\(=\left(x+1\right)\left(x-5\right)^2\)

\(C=2x^3-2x^2-2x+x^2-x-1\)

\(=2x\left(x^2-x-1\right)+x^2-x-1\)

\(=\left(2x+1\right)\left(x^2-x-1\right)\)

28 tháng 7 2020

a) 12x3 + 4x2 + 9x + 3 = 4x2(3x + 1) + 3(3x + 1) = (4x2 + 3)(3x + 1)

b) x3 + 2x2 - x - 2 = x2(x + 2) - (x + 2) = (x2 - 1(x + 2) = (x - 1)(x + 1)(x + 2)

c) a3 + (a - b)3 = (a + a - b)[a2 - a(a - b) + (a - b)2] = (2a - b)(a2 - a2 + ab +  a2 - 2ab + b2)

= (2a - b)(a2 - ab + b2)

28 tháng 7 2020

a) 12x3 + 4x2 + 9x + 3

= 4x2(3x + 1) + 3(3x + 1)

= (4x2 + 3)(3x + 1)

b) x3 + 2x2 - x - 2

= x2(x + 2) - (x + 2)

= (x2 - 1)(x + 2)

c) a3 + (a - b)3 

= a3 - a2(a - b) + a(a - b)2 + (a - b)a2 - (a - b)2a + (a - b)3

= a[(a2 - a(a - b) + (a - b)2] + (a - b)[a2 - a(a - b) + (a - b)2]

= (a + a - b)[(a2 - a(a - b) + (a - b)2]

5 tháng 7 2017

a, = (x+3y)^2

b, = (x-1/2)(x+1/2)

c, = (x-5)^2

d, = (2x+3y)(4x^2-6xy+9y^2)

e, = (x^3-y)^2

f,= (x+3y)^3

23 tháng 8 2020

a) -x2 + 2x - 1

= -( x2 - 2x + 1 )

= -( x - 1 )2

b) 12y - 36 - y2

= -( y2 - 12y + 36 )

= -( y - 6 )2

c) -x3 + 9x2 - 27x + 27

= -( x3 - 9x2 + 27x - 27 )

= -( x - 3 )3

d) x3 - 6x2 + 9x 

= x( x2 - 6x + 9 )

= x( x - 3 )2

e) a3b - ab3 

= ab( a2 - b2 )

= ab( a - b )( a + b )

f) a2 + 2a + 1 - b2

= a2 + ab + a - ab - b2 - b + a + b + 1

= a( a + b + 1 ) - b( a + b + 1 ) + 1( a + b + 1 )

= ( a - b + 1 )( a + b + 1 )

23 tháng 8 2020

a)\(-x^2+2x-1\) 

\(=-\left(x^2-2x+1\right)\)  

\(=-\left(x-1\right)^2\) 

b) \(12y-36-y^2\)    

\(=-\left(y^2-12y+36\right)\)    

\(=-\left(y^2-2\cdot1\cdot6+6^2\right)\)      

\(=-\left(y-6\right)^2\)        

c) \(-x^3+9x^2-27x+27\)      

\(=-x^3+3x^2+6x^2-18x-9x+27\)      

\(=-x^2\left(x-3\right)+6x\left(x-3\right)-9\left(x-3\right)\)     

\(=\left(x-3\right)\left(-x^2+6x-9\right)\)   

\(=\left(x-3\right)\cdot-\left(x^2-6x+9\right)\)   

\(=\left(x-3\right)\cdot-\left(x^2-2\cdot x\cdot3+3^2\right)\) 

\(=-\left(x-3\right)\left(x-3\right)^2\)                                    

\(=\left(x-3\right)^3\)      

d) \(x^3-6x^2+9\)     

\(=x\left(x^2-6x+9\right)\)    

\(=x\left(x-3\right)^2\)    

e) \(a^3b-ab^3\)     

\(=ab\left(a^2-b^2\right)\)  

\(=ab\left(a-b\right)\left(a+b\right)\)     

f) \(a^2+2a+1-b^2\)    

\(=a^2+2\cdot a\cdot1+1^2-b^2\)    

\(=\left(a+1\right)^2-b^2\)      

\(=\left(a+1-b\right)\left(a+1+b\right)\)

a) Ta có: \(x^2+9x+20\)

\(=x^2+4x+5x+20\)

\(=x\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(x+5\right)\)

b) Ta có: \(x^2+x-12\)

\(=x^2+4x-3x-12\)

\(=x\left(x+4\right)-3\left(x+4\right)\)

\(=\left(x+4\right)\left(x-3\right)\)

c) Ta có: \(6x^2-11x-16\)

\(=6\left(x^2-\frac{11}{6}x-\frac{16}{6}\right)\)

\(=6\left(x^2-2\cdot x\cdot\frac{11}{12}+\frac{121}{144}-\frac{505}{144}\right)\)

\(=6\left[\left(x-\frac{11}{12}\right)^2-\frac{505}{144}\right]\)

\(=6\left(x-\frac{11+\sqrt{505}}{12}\right)\left(x-\frac{11-\sqrt{505}}{12}\right)\)

d) Ta có: \(4x^2-8x-5\)

\(=4x^2-10x+2x-5\)

\(=2x\left(2x-5\right)+\left(2x-5\right)\)

\(=\left(2x-5\right)\left(2x+1\right)\)

e) Ta có: \(x^3-6x^2-x+30\)

\(=x^3+2x^2-8x^2-16x+15x+30\)

\(=x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-8x+15\right)\)

\(=\left(x+2\right)\left(x^2-3x-5x+15\right)\)

\(=\left(x+2\right)\left[x\left(x-3\right)-5\left(x-3\right)\right]\)

\(=\left(x+2\right)\left(x-3\right)\left(x-5\right)\)

g) Ta có: \(x^3+9x^2+23x+15\)

\(=x^3+x^2+8x^2+8x+15x+15\)

\(=x^2\left(x+1\right)+8x\left(x+1\right)+15\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+8x+15\right)\)

\(=\left(x+1\right)\left(x^2+3x+5x+15\right)\)

\(=\left(x+1\right)\left[x\left(x+3\right)+5\left(x+3\right)\right]\)

\(=\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

h) Ta có: \(2x^4-x^3-9x^2+13x\)

\(=x\left(2x^3-x^2-9x+13\right)\)

i) Ta có: \(x^4+2x^3-16x^2-2x+15\)

\(=x^4-3x^3+5x^3-15x^2-x^2+3x-5x+15\)

\(=x^3\left(x-3\right)+5x^2\left(x-3\right)-x\left(x-3\right)-5\left(x-3\right)\)

\(=\left(x-3\right)\left(x^3+5x^2-x-5\right)\)

\(=\left(x-3\right)\left[x^2\left(x+5\right)-\left(x+5\right)\right]\)

\(=\left(x-3\right)\left(x+5\right)\left(x^2-1\right)\)

\(=\left(x-3\right)\left(x+5\right)\left(x-1\right)\left(x+1\right)\)