K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

Ta có:

\(\left(x-1\right)\left(x+2\right)\left(x-3\right)\left(x+4\right)=144\)

\(\Leftrightarrow\left(x^2-x-2\right)\left(x^2-x-12\right)=144\)

Đặt \(x^2-x-7=m\left(1\right)\),Ta có:

\(\Leftrightarrow\left(m+5\right)\left(m-5\right)=144\)

\(\Leftrightarrow m^2=169\Rightarrow m=13\)

Thay \(\left(1\right)=13\)

\(\Rightarrow x^2-x-7=13\)

\(\Leftrightarrow\left(x-5\right)\left(x+4\right)=0\)

\(\Rightarrow x=5;x=-4\)

27 tháng 3 2021

Bn ấn vào câu hỏi của bn sẽ rs những câu tương tự có đáp án nhé!!Chúc bn lm đc bài này nha!!

27 tháng 3 2021

Trả lời:

A=(x-1)(x+2)(x-3)(x+4)-144

A= (x2-5x-14)(x2-5x-24)-144 (1)

đặt m=x2-5x-14

=> A= m.(m-10)-144

A=m2-10m-144

A= (m-18)(m+8)

thay m vào, ta có:

A= (x2-5x-32)(x2-5x-6)

A=(x2-5x-32)(x+1)(x-6)

12 tháng 10 2021

\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)

28 tháng 11 2021
Lol .ngudoots
31 tháng 7 2018

mk ghi kết quả thôi nhé, nếu từ kết quả mak k biết biến đổi thì ib cho mk

\(x^5-7x^4-x^3+43x^2-36=\left(x-6\right)\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

câu thứ 2 bạn ktra lại đề

\(x^4+2x^3-15x^2-18x+64=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)

\(x^3-x^2-4=\left(x-2\right)\left(x^2+x+2\right)\)

\(x^3-3x^2-4x+12=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

1 tháng 8 2018

a)  \(x^5-7x^4-x^3+43x^2-36\)

\(=x^3\left(x^2-1\right)-7x^2\left(x^2-1\right)+36\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^3-7x^2+36\right)=\left(x-1\right)\left(x+1\right)\left(x^3+2x^2-9x^2-18x+18x+36\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x^9-9x+18\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x-6\right)\)

c)  \(x^4+2x^3-15x^2-18x+64\)

\(=x^3\left(x-2\right)+4x^2\left(x-2\right)-7x\left(x-2\right)-32\left(x-2\right)\)

\(=\left(x-2\right)\left(x^3+4x^2-7x-32\right)\)

6 tháng 8 2016

\(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

6 tháng 8 2016

= ( x4 - x3 ) - (x2-1) = x3 ( x-1 ) - (x-1)(x+1) = ......    ? sao zx

24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

30 tháng 7 2015

= (x4 + 2x2 + 1) + (2x4 + x+ 2) - (x2 + x+1)2

= [(x+ 1) - (x2 + x+1)2  ] + (2x4 + x+ 2) 

= (x+ 1 + x2 + x + 1). (x+ 1 - x2 - x- 1)  + (2x4 + x+ 2) 

= (2x+ x + 2) (-x) + (2x4 + x+ 2)  = -2x3 - x- 2x + 2x4 + x+ 2 = -2x3 + 2x4 - 2x + 2

= -2x3. (1 - x) + 2.(1 - x) = (1- x). (-2x3 + 2) = 2.(1 - x)(1- x3) = 2. (1- x). (1- x) .(1 + x + x2) = 2.(1-x)2. (1 + x + x2)

17 tháng 9 2020

a) ( x + 1 )( x + 2 )( x + 3 )( x + 4 ) - 15

= [ ( x + 1 )( x + 4 ) ][ ( x + 2 )( x + 3 ) ] - 15

= ( x2 + 5x + 4 )( x2 + 5x + 6 ) - 15 (*)

Đặt t = x2 + 5x + 4 

(*) trở thành

t( t + 2 ) - 15

= t2 + 2t - 15

= t2 - 3t + 5t - 15

= t( t - 3 ) + 5( t - 3 )

= ( t - 3 )( t + 5 )

= ( x2 + 5x + 4 - 3 )( x2 + 5x + 4 + 5 )

= ( x2 + 5x + 1 )( x2 + 5x + 9 )

b) ( x + 2 )( x + 3 )2( x + 4 ) - 12

= [ ( x + 2 )( x + 4 ) ]( x + 3 )2 - 12

= ( x2 + 6x + 8 )( x2 + 6x + 9 ) - 12 (*)

Đặt t = x2 + 6x + 8

(*) trở thành

t( t + 1 ) - 12

= t2 + t - 12

= t2 - 3t + 4t - 12

= t( t - 3 ) + 4( t - 3 )

= ( t - 3 )( t + 4 )

= ( x2 + 6x + 8 - 3 )( x2 + 6x + 8 + 4 )

= ( x2 + 6x + 5 )( x2 + 6x + 12 )

= ( x2 + x + 5x + 5 )( x2 + 6x + 12 )

= [ x( x + 1 ) + 5( x + 1 ) ]( x2 + 6x + 12 )

= ( x + 1 )( x + 5 )( x2 + 6x + 12 )

17 tháng 9 2020

a, Gọi\(A=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)

                \(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)

Đặt\(y=x^2+5x+4\)

\(\Rightarrow A=y\left(y+2\right)-15\)

        \(=y^2+2y-15\)

        \(=\left(x-3\right)\left(x+5\right)\)

Hay\(A=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)

Vậy...

b,Gọi\(B=\left(x+2\right)\left(x+3\right)^2\left(x+4\right)-12\)

           \(=\left(x^2+6x+8\right)\left(x^2+6x+9\right)-12\)

Đặt\(z=x^2+6x+8\)

\(\Rightarrow B=z\left(z+1\right)-12\)

        \(=z^2+z-12\)

        \(=\left(z-3\right)\left(z+4\right)\)

Hay\(B=\left(x^2+6x+5\right)\left(x^2+6x+12\right)\)

Vậy...

Linz