Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c)^3 - a^3 - b^3 - c^3
=(a+b+c-a)[(a+b+c)2+a(a+b+c)+a2)-(b+c)(b2-bc+c2)
=(b+c)(3a2+b2+c2+3ab+3ac+2bc)-(b+c)(b2-bc+c2)
=(b+c)(3a2+3ab+3ac+3bc)
=3.(b+c)[a.(a+b)+c.(a+b)]
=3(b+c)(a+b)(a+c)
a) \(\left(a+b\right)^3+\left(a+b\right)^3\)
\(=\left(a+b+a+b\right)\left[\left(a+b\right)^2-2\left(a+b\right)^2+\left(a+b\right)^2\right]\)
\(=2\left(a+b\right)\left[\left(a+b\right)^2\left(1-2+1\right)\right]\)
\(=2\left(a+b\right)\)
b) \(9x^2+6xy+y^2\)
\(=\left(3x+y\right)^2\)
\(=\left(3x+y\right)\left(3x+y\right)\)
c) \(4x^2-25\)
\(=\left(2x\right)^2-5^2\)
\(=\left(2x+5\right)\left(2x-5\right)\)
2) =((x+y)+z)^3-x^3-y^3-z^3
=(x+y)^3+3(x+y)^2z +3(x+y)z^2+z^3-x^3-y^3-z^3
=x^3+y^3+3xy(x+y)+3(x+y)^2z+3(x+y)z^2-x^3-y^3
=3xy(x+y)+3(x+y)^2z+3(x+y)z^2
=3(x+y)(xy+(x+y)z+z^2)
=3(x+y)(xy+xz+yz+z^2)
=3(x+y)(x(y+z)+z(y+z))
=3(x+y)(y+z)(x+z)
1) a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3
= -3(a^2b-ab^2+b^2c-bc^2+c^2a-ca^2)
=-3(ab(a-b)+c(b^2-a^2)-c^2(b-a))
= -3(ab(a-b)-c(a+b)(a-b)+c^2(a-b))
= -3(a-b)(ab-ac-bc+c^2)
= -3(a-b)(a(b-c)-c(b-c))
= -3(a-b)(b-c)(a-c)
d) \(x^2-y^2-2x+2y\)
\(=\left(x^2-2x+1\right)-\left(y^2-2y+1\right)\)
\(=\left(x-1\right)^2-\left(y-1\right)^2\)
\(=\left(x-1-y+1\right)\left(x-1+y-1\right)\)
\(=\left(x-y\right)\left(x+y-2\right)\)
\(4xy^2-12x^2y+8xy\)
\(=4xy\left(y-3x+2\right)\)
\(3x^2-6xy+3y^2-12z^2\)
\(=3.\left(x^2-2xy+y^2-4z^2\right)\)
\(=3.\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
\(=3.\left(x-y-2z\right)\left(x-y+2z\right)\)
\(x^4y^4+4=\left[\left(x^2y^2\right)^2+2..x^2y^2.2+2^2\right]-\left(2xy\right)^2\)
\(=\left(x^2y^2+2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2y^2+2-2xy\right)\left(x^2y^2+2+2xy\right)\)
a.\(\left(x^2+x\right)^2+3\left(x^2+x\right)+2=\left(x^2+x\right)^2+2\left(x^2+x\right)+\left(x^2+x+2\right)\)
\(=\left(x^2+x\right)\left(x^2+x+2\right)+\left(x^2+x+2\right)=\left(x^2+x+2\right)\left(x^2+x+1\right)\)
b. \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)(1)
Đặt \(t=x^2+3x\)
(1) \(\Leftrightarrow t\left(t+2\right)+1\)
\(=t^2+2t+1=\left(t+1\right)^2\)(2)
Thay \(t=x^2+3x\)vào (2) t/có:
\(\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)
c. dài lắm mình lười làm, bn bấm thử mạng tìm ik nhớ tíck cho mình nha thanks
a)4a2b4-c4d2=(2ab2)2-(c2d)2=(2ab2-c2d)(2ab2+c2d)
b) (a+b)3-(a-b)3== 2a( a² + 2ab + b² - a² + b² + a² - 2ab + b² )
= 2a( a² + 3b²)
c)(6x-1)2-(3x+2)=36x2-12x+1-3x-2=36x2-15x-1=(6x)2-2.6x.\(\frac{15}{12}\)+\(\left(\frac{15}{12}\right)^2\)-\(\frac{41}{16}\)
=(6x-\(\frac{5}{4}\))2-\(\sqrt{\frac{41}{4}}^2\)=\(\left(6x-\frac{5}{4}-\sqrt{\frac{41}{4}}\right)\left(6x-\frac{5}{4}+\sqrt{\frac{41}{4}}\right)\)
= a^3 (b-c) + b^3 ( c- b + b - a) + c^3 ( a-b)
= a^3 (b-c) - b^3 ( b-c) - b^3(a-b) + c^3(a-b)
= (b-c)(a^3 - b^3) - (a-b)(b^3 - c^3)
=(b-c)(a-b)(a^2+ab+b^2) - (a-b)(b-c)(b^2+bc+c^2)
= (a-b)(b-c)(a^2 + ab + b^2 - b^2 - bc - c^2)
= (a-b)(b-c)( a^2 - c^2 + ab - bc)
=(a-b)(b-c)[(a-c)(a+c) + b(a-c)]
=(a-b)(b-c)(a-c)(a+b+c)
(a + b + c)3 - a3 - b3 -c3
= a3 + b3 + c3 - a3 - b3 - c3 = 0
Bạn Huyền sai rồi. Sao ( a + b + c )3 lại bằng a3 + b3 + c3 vậy! Theo mình thì phải thế này:
* Dùng hàng đẳng thức ta có: \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó biểu thức trên trở thành:
\(\left[a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)