Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng HĐT a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
a, \(x^3+8y^3+27z^3-18xyz=x^3+\left(2y\right)^3+\left(3z\right)^3-3.x.2y.3z\)
\(=\left(x+2y+3z\right)\left[x^2+\left(2y\right)^2+\left(3z\right)^2-x.2y-2y.3z-3z.x\right]\)
\(=\left(x+2y+3z\right)\left(x^2+4y^2+9z^2-2xy-6yz-3xz\right)\)
các bài còn lại tương tự
1 ) \(a\left(m+n\right)+b\left(m+n\right)\)
\(=\left(a+b\right)\left(m+n\right)\)
2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)
\(=\left(a^2-b^2\right)\left(x+y\right)\)
\(=\left[\left(a-b\right).\left(a+3\right)\right]\left(x+y\right)\)
3 ) \(6a^2-3a+12ab\)
\(=3a.2a-3a+3a.4b\)
\(=3a.\left(2a-1+4b\right)\)
4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)
\(=2x^2y^2.y^2-2x^2y^2.x^2+2x^2y^2.3xy\)
\(=2x^2y^2\left(y^2-x^2+3xy\right)\)
5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)
\(=\left(x+y\right)^2.\left(x+y-x\right)\)
\(=\left(x+y\right)^2.y\)
1)a(m+n)+b(m+n)
=(a+b)(m+n)
2)a2(x+y)-b2(x+y)
=(a2-b2)(x+y)
3)6a2-3a+12ab
=3a.2a-3a.(1-4b)
=3a.(2a-1+4b)
5)(x+y)3-x(x+y)2
=(x+y)(x+y)2-x(x+y)2
=(x+y)2(x+y-x)
mk ghi đáp án, còn lại bạn tự biến đổi
a) \(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4=\left(x+1\right)\left(x+2\right)^2\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)
d) \(4x^4+1=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
e) \(x^4-7x^3+14x^2-7x+1=\left(x^2-4x+1\right)\left(x^2-3x+1\right)\)
mk làm chi tiết theo yêu của của người hỏi đề:
a) \(2x^3-x^2+5x+3\)
\(=\left(2x^3-2x^2+6x\right)+\left(x^2-x+3\right)\)
\(=2x\left(x^2-x+3\right)+\left(x^2-x+3\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
b) \(x^3+5x^2+8x+4\)
\(=\left(x^3+4x^2+4x\right)+\left(x^2+4x+4\right)\)
\(=x\left(x^2+4x+4\right)+\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x^2+4x+4\right)\)
\(=\left(x+1\right)\left(x+2\right)^2\)
a, \(x^4-x^3-x^3+x^2-x^2+x+x-1\)\(1\)
=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)\)
=\(\left(x-1\right)\left(x^3+x^2-x+1\right)\)
b, \(\left(ab-1\right)^2+\left(a+b\right)^2\)
=\(a^2b^2-2ab+1+a^2+2ab+b^2\)
=\(a^2b^2+a^2+b^2+1\)
=\(a^2\left(b^2+1\right)+\left(b^2+1\right)\)
=\(\left(b^2+1\right)\left(a^2+1\right)\)
c,\(x^4+2x^3+2x^2+2x+1\)
=\(x^4+x^3+x^3+x^2+x^2+x+x+1\)
=\(x^3\left(x+1\right)+x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)\)
=\(\left(x+1\right)\left(x^3+x^2+x+1\right)\)
=\(\left(x+1\right)^2\left(x^2+1\right)\)
a) \(3^2\left(y-x\right)+6x^2\left(x-y\right)^2\)
\(=3\left(y-x\right)\left[3+2x^2\left(y-x\right)\right]\)
\(=3\left(y-x\right)\left(3+2x^2y-2x^3\right)\)
b) \(x^4-3x^3+3x-1\)
\(=\left(x^4+x^3\right)-\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-4x^2+4x-1\right)\)
\(=\left(x+1\right)\left[\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(x-1\right)\right]\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2-3x+1\right)\)
\(16-x^2=4^2-x^2=\left(4-x\right)\left(4+x\right)\)
\(4x^2-9=\left(2x\right)^2-3^2=\left(2x-3\right)\left(2x+3\right)\)
\(a^4-25=\left(a^2\right)^2-5^2=\left(a^2-5\right)\left(a^2+5\right)\)
\(\left(a+b\right)^2-1=\left(a+b\right)^2-1^2=\left(a+b-1\right)\left(a+b-1\right)\)
\(\left(a+b\right)^2-\left(m-n\right)^2=\left(a+b-m+n\right)\left(a+b+m-n\right)\)
\(x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+3^2\right)\)
\(64x^3+\frac{1}{27}=\left(4x\right)^3+\left(\frac{1}{3}\right)^3=\left(4x+\frac{1}{3}\right)\left(16x^2+\frac{4}{3}x+\frac{1}{9}\right)\)
Tham khảo~
\(16-x^2=4^2-x^2=\left(4-x\right)\left(4+x\right)\)
\(4x^2-9=\left(2x\right)^2-3^2=\left(2x+3\right)\left(2x-3\right)\)
\(a^4-25=\left(a^2\right)^2-5^2=\left(a^2+5\right)\left(a^2-5\right)\)
\(\left(a+b\right)^2-1=\left(a+b+1\right)\left(a+b-1\right)\)
\(\left(a+b\right)^2-\left(m-n\right)^2=\left(a+b+m-n\right)\left(a+b-m+n\right)\)
\(x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+9\right)\)
\(64x^3+\frac{1}{27}=\left(4x\right)^3+\left(\frac{1}{3}\right)^3=\left(4x+\frac{1}{3}\right)\left(16x^2-\frac{4}{3}x+\frac{1}{9}\right)\)