Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a3+2a2-13a+10
Ta thấy a=1;a=2 là nghiệm của đa thức nên:
=(a-2)(a-1)(a+5)
b)(a2+4b2-5)2-16(ab+1)2
=(a2+4b2-5+4ab+4)(a2+4b2-5-4ab-4)
=[(a+2b)2-1][(a-2b)2-9]
=(a+2b+1)(a+2b-1)(a-2b+3)(a-2b-3)
1) \(a^3+2a^2-13a+10=a^3-a^2+3a^2-3a-10a+10=\)
\(=a^2\left(a-1\right)+3a\left(a-1\right)-10\left(a-1\right)=\left(a-1\right)\left(a^2+3a-10\right)\)
\(=\left(a-1\right)\left(a^2-2a+5a-10\right)=\left(a-1\right)\left[a\left(a-2\right)+5\left(a-2\right)\right]=\)
\(=\left(a-1\right)\left(a-2\right)\left(a+5\right)\)
b) \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2=\left(a^2+4b^2-5+4ab+4\right)\left(a^2+4b^2-5-4ab-4\right)\)
\(=\left(a^2+4ab+4b^2-1\right)\left(a^2-4ab+4b^2-9\right)=\left[\left(a+2b\right)^2-1\right]\left[\left(a-2b\right)^2-9\right]=\)
\(=\left(a+2b+1\right)\left(a+2b-1\right)\left(a-2b+3\right)\left(a-2b-3\right)\)
2) \(6a-5b=1\Rightarrow5b=6a-1\Rightarrow25b^2=36a^2-12a+1\)
\(\Rightarrow4a^2+25b^2=40a^2-12a+1=40\left(a^2-2\cdot a\cdot\frac{3}{20}+\left(\frac{3}{20}\right)^2\right)+1-\frac{9}{10}\)
\(=40\left(a-\frac{3}{20}\right)^2+\frac{1}{10}\)
Vậy GTNN của \(4a^2+25b^2\)= 1/10. Xảy ra khi a = 3/20 và b = -1/50.
Phân tích đa thức thành nhân tử:
\(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(a^6-a^4+2a^3+2a^2\)
a) \(\left(4x^2-25\right)^2-9\left(2x-5\right)^2\)
\(=\left(4x^2-25\right)^2-\left(6x-15\right)^2\)
\(=\left(4x^2-25-6x+15\right)\left(4x^2-25+6x-15\right)\)
\(=\left(4x^2-6x-10\right)\left(4x^2+6x-40\right)\)
\(=\left(4x^2+4x-10x-10\right)\left(4x^2+16x-10x-40\right)\)
\(=\left[4x\left(x+1\right)-10\left(x+1\right)\right]\left[4x\left(x+4\right)-10\left(x+4\right)\right]\)
\(=\left(4x-10\right)\left(x+1\right)\left(4x-10\right)\left(x+4\right)\)
\(=\left(4x-10\right)^2\left(x+1\right)\left(x+4\right)\)
\(=4\left(2x-5\right)^2\left(x+1\right)\left(x+4\right)\)
b) \(a^6-a^4+2a^3+2a^2\)
\(=a^2\left(a^4-a^2+2a+2\right)\)
\(=a^2\left(a^4+a^3-a^3-a^2+2a+2\right)\)
\(=a^2\left[a^3\left(a+1\right)-a^2\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a^2\left(a+1\right)\left(a^3-a^2+2\right)\)
\(1-2a+2bc+a^2-b^2-c^2\)
\(=\)\(\left(a^2-2a+1\right)-\left(b^2-2bc+c^2\right)\)
\(=\)\(\left(a-1\right)^2-\left(b-c\right)^2\)
\(=\)\(\left(a-b+c-1\right)\left(a+b-c-1\right)\)
Chúc bạn học tốt ~
a( a+2b)^3 - b( 2a+b)^3
=a (a^3 + 2b^3) -b (2a^3 + b^3)
=a^4+ 2ab^3 - 2ab^3 - b^4
=( a^4-b^4) +(2ab^3-2ab^3)
=a-b
Chúc bạn hk tốt, k ch mk nha
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
dễ cực lun
3 k cho người đánh nhung
a3 + 2a2 - 13a + 10
= a3 - a2 + 3a2 - 3a - 10a +10
= a2(a-1) + 3a(a-1) -10(a-1)
= (a-1)(a2+3a-10)
= (a-1)(a-2)(a+5)