Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$ 2x^3 - x^2 + 5x + 3 \\ = 2x^3 + x^2 - 2x^2 - x + 6x + 3 \\ = x^2(2x + 1) - x(2x + 1) + 3(2x + 1) \\ = (2x + 1)(x^2 - x + 3) $
\(2x^3-x^2+5x+3\)
= \(2x^3+x^2-2x^2-x+6x+3\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
Vì \(x^2-x+3=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}+3>0\)
Nên
\(2x^3-x^2+5x+3=\left(2x+1\right)\left(x^2-x+3\right)\)
\(-\left(x^2-2x+1\right)=-\left(x-1\right)^2\)
\(8x^3+y^6=\left(2x+y^2\right)\left(4x^2-2xy^2+y^4\right)\)
\(x^2-16+4xy+4y^2=\left(x+2y\right)^2-16\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
(x2 - 3)2 + 16
= (x2 - 3)2 + 42
= (x2 - 3 + 4)(x2 - 3 - 4)
= (x2 + 1)(x2 - 7)
=x^3-2x^2+2x-4-9
=(x-2)(x^2+2)-9
\(=\left(\sqrt{\left(x-2\right)\left(x^2+2\right)}-3\right)\left(\sqrt{\left(x-2\right)\left(x^2+2\right)}+3\right)\)
x\(^2\)-(a+b)x+ab
= x\(^2\)-ax-bx+ab
= x(x-a) - b(x-a)
= ( x-a).( x-b)
ax-2x-a\(^2\)+2a
= x(a-2) - a(a-2)
= (a-2).( x-a)
\(2x^2-5x-7\)
\(=2x^2+2x-7x-7\)
\(=2x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(2x-7\right)\left(x+1\right)\)
Vậy ...
a, \(m^3+27\)
\(\Leftrightarrow m^3+3^3\)
\(\Leftrightarrow\left(m+3\right)\left(m^2-m.3+3^2\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m^2-3m+9\right)\)
b,\(\frac{1}{27}+a^3\)
\(\Leftrightarrow\frac{1}{27}\left(1+27a^3\right)\)
\(\Leftrightarrow\frac{1}{27}.\left(1+3a\right)\left(1-3a+9a^2\right)\)
c,\(\left(a+b\right)^3-c^3\)
\(\Leftrightarrow\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]\)
\(\Leftrightarrow\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)
d,\(x^9+1\)
\(\Leftrightarrow\left(x^3+1\right)\left(x^6-x^3+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\left(x^6-x^3+1\right)\)
e,\(x^3+9x^2+27x+27\)
\(\Leftrightarrow x^3+3.x^2.3+3x.9+3^3\)
\(\Leftrightarrow x^3+3x^2.3+3x+3^2+3^3\)
\(\Leftrightarrow\left(x+3\right)^3\)
\(A=27x^3-27x^2+18x-6=3\left(9x^3-9x^2+6x-2\right)\)
\(B=2x^3-x^2+5x+6=2x^3-2x^2+x^2-x+6x+6==\left(2x^2+x+6\right)\left(x-1\right)\)