Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này giải hệ số bất định.
Ta có:
\(x^4-8x+63\)
\(=x^4+4x^3-4x^3+9x^2-16x^2+7x^2-36x+28x+63\)
\(=\left(x^4-4x^3+7x^2\right)+\left(4x^3-16x^2+28x\right)+\left(9x^2-36x+63\right)\)
\(=x^2\left(x^2-4x+7\right)+4x\left(x^2-4x+7\right)+9\left(x^2-4x+7\right)\)
\(=\left(x^2+4x+9\right)\left(x^2-4x+7\right)\)
a) \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) \(4x^8+1=4x^8+4x^4+1-4x^4=\left(2x^4+1\right)^2-4x^4=\left(2x^4-2x^2+1\right)\left(2x^4+2x^2+1\right)\)
d) \(x^2+14x+48=\left(x+7\right)^2-1=\left(x+7+1\right)\left(x+7-1\right)=\left(x+8\right)\left(x+6\right)\)
a ) \(x^2-8x+15\)
\(=x^2-3x-5x+15\)
\(=x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(x-5\right)\)
b ) \(4x^8+1\)
\(=4x^8+1+4x^2-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)\)
\(x^8+x^4+1\)
\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)
\(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=\left(x^5-x^4+x^3\right)-\left(x^3-x^2+x\right)-\left(x^2-x+1\right)\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
Ta có : \(x^8+14x^4+1\)
\(=x^8+2.x^4.7+1\)
\(=x^8+2.x^4.7+49-48\)
\(=\left(x^4+7\right)^2-48\)
\(=\left(x^4+7-\sqrt{48}\right)\left(x^4+7+\sqrt{48}\right)\)
a/\(=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)
\(=\left(x^4+1+2x^2\right)^2-4x^2\left(x^4+1-2x^2\right)=\left(x^4+2x^2+1\right)-\left(2x^3-2x\right)^2\)
\(=\left(x^4+2x^3+2x^2-2x+1\right)\left(x^4-2x^3+2x^2+2x+1\right)\)
b/\(=\left(x^4+1\right)^2+96x^4=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)=\left(x^4+8x^2+1\right)-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
a )
b)
c) x^5 - x^4 - 1
= x^5 - x^3 - x² - x^4 + x² + x + x^3 - x - 1
= x²( x^3 - x - 1 ) - x( x^3 - x - 1 ) + ( x^3 - x - 1 )
= ( x² - x + 1)( x^3 - x - 1 )
d)
x3 + 7x - 6=x2 . x + 7x - 22 + 2 = (x2 - 22) + (x+7x)+2=(x-2) . (x+2) + 8x + 2
x3 - 5x + 8x - 4=x2 . x -5x + 8x -22 = (x2 - 22) . (x -5x + 8x )=(x-2) . (x+2) . 4x
x3 - 9x2 + 6x + 16=x2 . x - 9x2 + 6x + 16 = (x2 - 9x2) . (x+6x) + 16=(x-9x) . (x+9x) . 7x + 16
k mk nha
Ta có : x4 + 8x2 + 7x + 8
= x4 - x + 8x2 + 8x + 8
= x(x3 - 1) + 8(x2 + x + 1)
= x(x - 1)(x2 + x + 1) + 8(x2 + x + 1)
= (x2 - x)(x2 + x + 1) + 8(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 8)
Học tốt nhé !
mk chỉ lm đc câu b thôi !
mk k viết đề đâu nha !:
=(x4-8x2+16)+(5x2-20x+20)+(3x2+12x+12)+15
=(x2-4)2+5(x-2)2+3(x-2)2+15
=[(x-2)2+3][(x-2)2+5]
=(x2-4x+7)(x2+4x+9)
đúng 100 %