Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^8+x^7+1\)
\(=\left(x^8-x^6+x^5-x^3+x^2\right)+\left(x^7-x^5+x^4-x^2+x\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=x^2\left(x^6-x^4+x^3-x+1\right)+x\left(x^6-x^4+x^3-x+1\right)+\left(x^6-x^4+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a, x8 + x7 + 1
=x2 (x6 - 1) + x (x6 - 1) +(x2 + x + 1)
= (x6 _ 1)(x2 + x) + (x2 + x +1)
= (x3 - 1)(x3 + 1)( x2 + x) + (x2 + x +1)
=(x - 1)(x2 + x +1)( x2 + x) + (x2 + x +1)
=(x2 + x +1)((x - 1)( x2 + x) +1)
=(x2 + x +1)(x3 + 1)
b, x5 - x4-1
c, x7+x5 + 1
d,x8 + x4 +1
Chú ý: Các đa thức có dạng: x3m+1+x3n+2+1 như x7+x2+1; x7+x5+1; x8 + x4 +1;
x5+x+1; x8+x+1 đều có nhân tử chung là x2 + x +1
Các phần còn lại tương tự nhé!!!
a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)
b) và c) Tương tự nha
Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại
a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)
b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)
c)Tương tự câu a),ta phân tích được:
\(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
a, b sai đề nhé , sửa lại :
\(a,x^7+x^5+1=x^7+x^6+x^5-x^6+1=....\)
\(b,x^5+x+1=x^5-x^2+x^2+x+1=....\)
\(c,x^{11}+x+1=x^{11}-x^8+x^8-x^5+x^5-x^2+x^2+x+1=...\)
\(d,x^8+x^7+1=x^8+x^7+x^6-x^6+1=...\)
\(e,x^5+x^4+2x^2-1\)
Câu e tớ chịu , các câu trên tớ chỉ cho cậu hướng tách các hạng tử thôi, để cậu dễ dàng nhóm các nhân tử chung là \(x^2+x+1\), câu nào chưa làm được nữa thì để tớ giải rõ hơn nha
Câu a, b, c :Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 8 - Học toán với OnlineMath
Câu d, e, f: Câu hỏi của Trịnh Ánh My - Toán lớp 8 - Học toán với OnlineMath
a, \(x^8+x^7+1\)= \(\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(b,x^5-x^4-1\)\(=\left(x^2-x+1\right)\left(x^3-x+1\right)\)
\(c,x^7+x^5+1\) = \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
\(d,x^8+x^4+1=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
a, x8+x7+1= (x2+x+1)(x6−x4+x3−x+1)
b,x5−x4−1=(x2−x+1)(x3−x+1)
c,x7+x5+1 = (x2+x+1)(x5−x4+x3−x+1)
d,x8+x4+1=(x2−x+1)(x2+x+1)(x4−x2+1)
a) x7+ x2 + 1
=x7-x+x2+x+1
=x.(x6-1)+(x2+x+1)
=x.(x3-1)(x3+1)+(x2+x+1)
=x.(x-1)(x2+x+1)(x3+1)+(x2+x+1)
=(x2+x+1)[x.(x-1)(x3+1)+1]
=(x2+x+1)(x5+x2-x4-x+1)
b) x5 + x4 + 1
=x5+x4+x3+x2+x+1-x3-x2-x
=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)
=(x2+x+1)(x3+1-x)
a/ Ta có : (x2 + x + 1)2 = [x2 + (x + 1)]2 = x4 + 2x2(x + 1) + (x + 1)2 Nên:
A = (x + 1)4 + (x2 + x + 1)2 = (x + 1)4 + x4 + 2x2(x + 1) + (x + 1)2 = [(x + 1)4 + (x + 1)2] + [x4 + 2x2(x + 1)]
= (x + 1)2(x2 + 2x + 2) + x2(x2 + 2x + 2) = (x2 + 2x + 2)(2x2 + 2x + 1).
b/ B = x10 + x5 + 1 Đặt \(|x^5|=t^2\) thì x10 = t4 Ta có B = t4 + t2 + 1 = (t2 + 1)2 - t2 = (t2 - t + 1)(t2 + t + 1)
Vậy : \(B=\left(x^5-\sqrt{|x|^5}+1\right)\left(x^5+\sqrt{|x|^5}+1\right).\)
c/ Nhân đa thức được: C = x2(x4 - 1)(x2 + 2) + 1 = (x6 - x2)(x2 + 2) + 1 = x6 (x2 + 2) - x2 (x2 + 2) + 1
C = x8 + 2x6 - x4 - 2x2 + 1 = x8 + 2x6 - 2x4 + x4 - 2x2 + 1 = (x4)2 + 2x4 (x2 - 1) + (x2 - 1)2
C = (x4 + x2 + 1)2 .
d/ D = 1 + ( a + b + c) + ab + bc + ca) + abc = (1 + a) + (abc + bc) + (b + ab) + (c + ca) = (1 + a) + bc(1 + a) + b(1 + a) + c(1 + a) =
= (1 + a)(1 + bc + b + c) = (1 + a)[(1 + b) + c(1 + b)] = (1 + a)(1 + b)(1 + c).
\(b,\)\(x^{10}+x^5+1\)
\(=x^{10}-x^7+x^7+x^5+x^3-x^3+1\)
\(=x^7\left(x^3-1\right)+x^3\left(x^4+x^2+1\right)-\left(x^3-1\right)\)
\(=x^7\left(x-1\right)\left(x^2+x+1\right)+x^3\left(x^4+2x^2+1-x^2\right)-\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^7\left(x-1\right)\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)\left(x^2-x+1\right)\)\(-\left(x-1\right)\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)
\(d,\)\(1+\left(a+b+c\right)+\left(ab+bc+ca\right)+abc\)
\(=1+a+b+c+ab+bc+ca+abc\)
\(=\left(ab+b\right)+\left(abc+bc\right)+\left(ac+c\right)+\left(a+1\right)\)
\(=b\left(a+1\right)+bc\left(a+1\right)+c\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(b+bc+c+1\right)\)
\(=\left(a+1\right)\left[b\left(c+1\right)+\left(c+1\right)\right]\)
\(=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
a) x5 + x +1
=x5-x4+x4-x3+x3-x2+x2+x+1
=(x5+x4+x3)-(x4+x3+x2)+(x2+x+1)
=x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)
=(x2+x+1)(x3-x2+1)
b,c,d làm tương tự câu a
nhớ tích cho mình với nhé
a, x( x4 + 1 + 1 )
= x5 + 2
chắc z !